Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Formula collection for Digital Image Processing Maria Magnusson, [email protected] May 2013 1 1-D Continuous Fourier Transforms Definition: Signal domain, t ∈ R ∞ G(f )ej2πf t df g(t) = Frequency domain,f ∈ R ∞ G(f ) = g(t)e−j2πf t dt Real signal: Linearity: g(t) real ag1 (t) + bg2 (t) G(−f ) = G∗ (f ) aG1 (f ) + bG2 (f ) −∞ e−j2πf a G(f ) Translation, time: g(t − a) Translation, freq: Scaling: Convolution: Correlation: Multiplication: Derivative: Dirac impulse: Impulse train: ej2πat g(t) g(at) (g ∗ h)(t) (g2h)(t) g(t) · h(t) d g(t) dt δ(t) δ(t − nΔ) sΔ (t) = unit step: u(t) = Rectangle puls: Π(t) = Sinc function : sinc(t) Triangle puls : Λ(t) = n 1, t ≥ 0 0, t < 0 1, |t| ≤ 0.5 0, |t| > 0.5 1 − |t|, |t| ≤ 1 0, |t| > 1 Cosinine wave: cos 2πf0 t 2 Dirac impulses: (δ(t − Δ) + δ(t + Δ)) /2 Sine wave: sin 2πf0 t 2 Dirac impulses: (−δ(t − Δ) + δ(t + Δ)) /2 Constant: 1 Gauss: Miscellaneous: −∞ 2 G(f − a) (1/|a|) · G(f /a) G(f ) · H(f ) G∗ (f ) · H(f ) (G ∗ H)(f ) j2πf G(f ) 1 1 1 k δ f− s1/Δ (f ) = Δ Δ k Δ 1 1 + δ(f ) j2πf 2 sin(πf ) sinc(f ) = πf Π(f ) sinc2 (f ) (δ(f + f0 ) + δ(f − f0 )) /2 cos(2πΔf ) j (δ(f + f0 ) − δ(f − f0 )) /2 j sin(2πΔf ) δ(f ) 2 e−πt e−at u(t) te−at u(t) e−πf 1/(a + j2πf ) 1/(a + j2πf )2 e−a|t| 2a/(a2 + (2πf )2 ) 2πf0 (a + j2πf )2 + (2πf0 )2 a + j2πf (a + j2πf )2 + (2πf0 )2 e−at sin(2πf0 t)u(t) e−at cos(2πf0 t)u(t) 2 2-D Continuous Fourier Transforms Definition: Spatial domain, x, y ∈ R Frequency domain, u, v ∈ R f (x, y) = F (u, v) = ∞ ∞ j2π(xu+yv) F (u, v)e dudv f (x, y)e−j2π(xu+yv) dxdy Real signal: Linearity: f (x, y) real af1 (x, y) + bf2 (x, y) F (−u, −v) = F ∗ (u, v) aF1 (u, v) + bF2 (u, v) Translation, time: f (x − a, y − b) e−j2π(au+bv) F (u, v) Translation, freq: Scaling: Convolution: Correlation: Multiplication: ej2π(ax+by) f (x, y) f (ax, by) (f ∗ g)(x, y) (f 2g)(x, y) f (x, y) · g(x, y) ∂ f (x, y) ∂x ∂ f (x, y) ∂y ∇2 f (x, y) = 2 ∂ ∂2 f (x, y) + ∂x2 ∂y 2 x f (Ax), x = y x f (Rx), x = y F (u − a, v − b) (1/|ab|) · F (u/a, v/b) F (u, v) · G(u, v) F ∗ (u, v) · G(u, v) (F ∗ G)(u, v) −∞ Derivative in x: Derivative in y: Laplace: General scaling: Rotation 1: −∞ j2πu · F (u, v) j2πv · F (u, v) − 4π 2 (u2 + v 2 ) · F (u, v) 1 F ((A−1 )T u), u = | det A| u F (Ru), u = v f (r, θ + θ0 ) x = r cos θ, y = r sin θ Separable function: f (x, y) = g(x) · h(y) Dirac impulse: δ(x, y) = δ(x) · δ(y) Box: Π(x, y) = Π(x) · Π(y) Bend pyramid: Λ(x, y) = Λ(x) · Λ(y) F (ω, ϕ + θ0 ) u = ω cos ϕ, v = ω sin ϕ F (u, v) = G(u) · H(v) 1 sinc(u) · sinc(v) sinc2 (u) · sinc2 (v) Rotation 2: Gauss: e−π(x 2 +y 2 ) 2 = e−πx · e−πy 2 e−π(u 2 +v 2 ) 2 = e−πu · e−πv 2 u v 3 Definitions, Properties and Relations DFT and IDFT, 1D and 2D: F [k] = N −1 f [n] · e −j 2π nk N , n=0 F [k, l] = f [n, m] = −1 N −1 M f [n, m] · e−j2π(nk/N +ml/M ) , n=0 m=0 −1 N −1 M 1 NM N −1 2π 1 f [n] = F [k] · ej N nk N k=0 F [k, l] · ej2π(nk/N +ml/M ) k=0 l=0 Symmetric DFT and IDFT, 1D and 2D: M/2−1 F [k] = f [m] · e −j 2π km M , m=−M/2 M/2−1 F [k, l] = 1 f [m] = M M/2−1 2π F [k] · ej M km k=−M/2 N/2−1 f [m, n] · e−j2π(km/M +ln/N ) , m=−M/2 n=−N/2 1 f [m, n] = MN M/2−1 N/2−1 F [k, l] · ej2π(km/M +ln/N ) k=−M/2 l=−N/2 Sifting property, 1D and 2D: ∞ x(t )δ(t − t0 ) dt = x(t0 ), −∞ ∞ ∞ f (x , y )δ(x − x0 , y − y0 ) dx dy = f (x0 , y0 ) −∞ −∞ Convolution with a shifted dirac impulse, 1D and 2D: ∞ x(t − t )δ(t − t0 ) dt = x(t − t0 ) x(t) ∗ δ(t − t0 ) = −∞ ∞ ∞ f (x, y) ∗ δ(x − x0 , y − y0 ) = f (x − x , y − y )δ(x − x0 , y − y0 ) dx dy −∞ −∞ = f (x − x0 , y − y0 ) Parseval’s formula, 1D and 2D: ∞ ∞ ∗ x(t)y (t) dt = X(f )Y ∗ (f ) df −∞ ∞ ∞ −∞ ∞ ∞ ∗ f (x, y)g (x, y) dxdy = F (u, v)G∗ (u, v) dudv −∞ −∞ −∞ −∞