Download Formula collection for Digital Image Processing

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Formula collection for
Digital Image Processing
Maria Magnusson, [email protected]
May 2013
1
1-D Continuous Fourier Transforms
Definition:
Signal domain, t ∈ R
∞
G(f )ej2πf t df
g(t) =
Frequency domain,f ∈ R
∞
G(f ) =
g(t)e−j2πf t dt
Real signal:
Linearity:
g(t) real
ag1 (t) + bg2 (t)
G(−f ) = G∗ (f )
aG1 (f ) + bG2 (f )
−∞
e−j2πf a G(f )
Translation, time: g(t − a)
Translation, freq:
Scaling:
Convolution:
Correlation:
Multiplication:
Derivative:
Dirac impulse:
Impulse train:
ej2πat g(t)
g(at)
(g ∗ h)(t)
(g2h)(t)
g(t) · h(t)
d
g(t)
dt
δ(t)
δ(t − nΔ)
sΔ (t) =
unit step:
u(t) =
Rectangle puls:
Π(t) =
Sinc function :
sinc(t)
Triangle puls :
Λ(t) =
n
1, t ≥ 0
0, t < 0
1, |t| ≤ 0.5
0, |t| > 0.5
1 − |t|, |t| ≤ 1
0,
|t| > 1
Cosinine wave:
cos 2πf0 t
2 Dirac impulses: (δ(t − Δ) + δ(t + Δ)) /2
Sine wave:
sin 2πf0 t
2 Dirac impulses: (−δ(t − Δ) + δ(t + Δ)) /2
Constant:
1
Gauss:
Miscellaneous:
−∞
2
G(f − a)
(1/|a|) · G(f /a)
G(f ) · H(f )
G∗ (f ) · H(f )
(G ∗ H)(f )
j2πf G(f )
1
1
1 k
δ f−
s1/Δ (f ) =
Δ
Δ k
Δ
1
1
+ δ(f )
j2πf
2
sin(πf )
sinc(f ) =
πf
Π(f )
sinc2 (f )
(δ(f + f0 ) + δ(f − f0 )) /2
cos(2πΔf )
j (δ(f + f0 ) − δ(f − f0 )) /2
j sin(2πΔf )
δ(f )
2
e−πt
e−at u(t)
te−at u(t)
e−πf
1/(a + j2πf )
1/(a + j2πf )2
e−a|t|
2a/(a2 + (2πf )2 )
2πf0
(a + j2πf )2 + (2πf0 )2
a + j2πf
(a + j2πf )2 + (2πf0 )2
e−at sin(2πf0 t)u(t)
e−at cos(2πf0 t)u(t)
2
2-D Continuous Fourier Transforms
Definition:
Spatial domain, x, y ∈ R
Frequency domain, u, v ∈ R
f (x, y) =
F (u, v) =
∞
∞
j2π(xu+yv)
F (u, v)e
dudv
f (x, y)e−j2π(xu+yv) dxdy
Real signal:
Linearity:
f (x, y) real
af1 (x, y) + bf2 (x, y)
F (−u, −v) = F ∗ (u, v)
aF1 (u, v) + bF2 (u, v)
Translation, time:
f (x − a, y − b)
e−j2π(au+bv) F (u, v)
Translation, freq:
Scaling:
Convolution:
Correlation:
Multiplication:
ej2π(ax+by) f (x, y)
f (ax, by)
(f ∗ g)(x, y)
(f 2g)(x, y)
f (x, y) · g(x, y)
∂
f (x, y)
∂x
∂
f (x, y)
∂y
∇2 f (x, y) =
2
∂
∂2
f (x, y)
+
∂x2 ∂y 2
x
f (Ax), x =
y
x
f (Rx), x =
y
F (u − a, v − b)
(1/|ab|) · F (u/a, v/b)
F (u, v) · G(u, v)
F ∗ (u, v) · G(u, v)
(F ∗ G)(u, v)
−∞
Derivative in x:
Derivative in y:
Laplace:
General scaling:
Rotation 1:
−∞
j2πu · F (u, v)
j2πv · F (u, v)
− 4π 2 (u2 + v 2 ) · F (u, v)
1
F ((A−1 )T u), u =
| det A|
u
F (Ru), u =
v
f (r, θ + θ0 )
x = r cos θ, y = r sin θ
Separable function: f (x, y) = g(x) · h(y)
Dirac impulse:
δ(x, y) = δ(x) · δ(y)
Box:
Π(x, y) = Π(x) · Π(y)
Bend pyramid:
Λ(x, y) = Λ(x) · Λ(y)
F (ω, ϕ + θ0 )
u = ω cos ϕ, v = ω sin ϕ
F (u, v) = G(u) · H(v)
1
sinc(u) · sinc(v)
sinc2 (u) · sinc2 (v)
Rotation 2:
Gauss:
e−π(x
2 +y 2 )
2
= e−πx · e−πy
2
e−π(u
2 +v 2 )
2
= e−πu · e−πv
2
u
v
3
Definitions, Properties and Relations
DFT and IDFT, 1D and 2D:
F [k] =
N
−1
f [n] · e
−j 2π
nk
N
,
n=0
F [k, l] =
f [n, m] =
−1
N
−1 M
f [n, m] · e−j2π(nk/N +ml/M ) ,
n=0 m=0
−1
N
−1 M
1
NM
N −1
2π
1 f [n] =
F [k] · ej N nk
N k=0
F [k, l] · ej2π(nk/N +ml/M )
k=0 l=0
Symmetric DFT and IDFT, 1D and 2D:
M/2−1
F [k] =
f [m] · e
−j 2π
km
M
,
m=−M/2
M/2−1
F [k, l] =
1
f [m] =
M
M/2−1
2π
F [k] · ej M km
k=−M/2
N/2−1
f [m, n] · e−j2π(km/M +ln/N ) ,
m=−M/2 n=−N/2
1
f [m, n] =
MN
M/2−1
N/2−1
F [k, l] · ej2π(km/M +ln/N )
k=−M/2 l=−N/2
Sifting property, 1D and 2D:
∞
x(t )δ(t − t0 ) dt = x(t0 ),
−∞
∞ ∞
f (x , y )δ(x − x0 , y − y0 ) dx dy = f (x0 , y0 )
−∞
−∞
Convolution with a shifted dirac impulse, 1D and 2D:
∞
x(t − t )δ(t − t0 ) dt = x(t − t0 )
x(t) ∗ δ(t − t0 ) =
−∞
∞ ∞
f (x, y) ∗ δ(x − x0 , y − y0 ) =
f (x − x , y − y )δ(x − x0 , y − y0 ) dx dy −∞
−∞
= f (x − x0 , y − y0 )
Parseval’s formula, 1D and 2D:
∞
∞
∗
x(t)y (t) dt =
X(f )Y ∗ (f ) df
−∞
∞ ∞
−∞
∞ ∞
∗
f (x, y)g (x, y) dxdy =
F (u, v)G∗ (u, v) dudv
−∞
−∞
−∞
−∞
Related documents