Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Homework #3 Chapter 4 Types of Chemical Reactions and Solution Stoichiometry 11. Determine the concentrations of the solutions Solution A 4 ππππ‘πππππ 1.0 πΏ = 4.0 ππππ‘πππππ πΏ Solution B 5 πππ‘πππππ 4.0 πΏ = 1.3 ππππ‘πππππ πΏ Solution C 4 ππππ‘πππππ 2.0 πΏ = 2.0 ππππ‘πππππ πΏ Solution D 6 ππππ‘πππππ 2.0πΏ = 3.0 ππππ‘πππππ πΏ Therefore, the order of solution from most to least concentrated is solution A > solution D > solution C > solution B 13. a) b) c) d) 15. Polar solutes will mix with water and nonpolar solutes will not. For polar solutes the water molecules will orientate so that the H-atoms are lined up around the anion and the O-atoms are lined up around the cation. If the solutes are liquids then you will see only see one solution after water has been mixed with a polar solute and two layers when water has been mixed with a nonpolar solute. When KF is put into water all of it will dissociate into K+ and F- because it is a strong electrolyte. When C6H12O6 dissolves in water it will stay as C6H12O6 molecules and not dissociate into atoms/ions because C6H12O6 is a nonelectrolyte. The water molecules will orientate themselves so that the H-atoms in the water are near the partially negative locations in C6H12O6 and the O-atoms in the water are near the partially positive regions of the molecule. When RbCl is put into water it will dissociate in Rb+ and Cl- because it is a strong electrolyte. When AgCl is put into solution it will stay as a solid because it is not soluble in water. HNO3 is a strong acid and will complete dissociate into H+ and NO3-. CO is a nonelectrolyte and will not dissociate in water. The water molecules will orientate to support the partially negative and positive regions of the molecule. Determine the formula and ions of each of the names a) barium nitrate Ba(NO3)2 which is made up of Ba2+ and NO3matches with beaker iv b) sodium chloride NaCl which is made up of Na+ and Clmatches with beaker ii c) potassium carbonate K2CO3 which is made up of K+ and CO32matches with beaker iii d) magnesium sulfate MgSO4 which is made up of Mg2+ and SO42matches with beaker i 1 17. a) L NaOH ο g NaOH L NaOH ο mol NaOH ο g NaOH g M NaOH ο½ 40.00 mol mol NaOH 2.00 L ο¨ 0.250 ο© 1L NaOH ο¨ 40.00 g NaOH 1mol NaOH ο© ο½ 20.0 g NaOH 20.0 g of NaOH would be put into a volumetric flask and then water would be added to the 2.00 L mark. b) M1V1 ο½ M 2V2 ο¨1.00M ο©ο¨V1 ο© ο½ ο¨ 0.250ο©ο¨ 2.00L ο© V1 ο½ 0.500 L c) 0.500 L of the 1.00 M stock solution would be put into a volumetric flask and then water would be added to the 2.00 L mark. L K2CrO4 ο g K2CrO4 L K2CrO4 ο mol K2CrO4 ο g K2CrO4 g M K2CrO4 ο½ 194.20 mol 2.00 L K 2CrO4 ο¨ 0.100 mol K 2CrO4 1L K 2CrO4 ο©ο¨ 194.20 g K 2CrO4 1mol K 2CrO4 ο© ο½ 38.8g K CrO 2 4 38.8 g of K2CrO4 would be put into a volumetric flask and then water would be added to the 2.00 L mark. d) M1V1 ο½ M 2V2 ο¨1.75M ο©ο¨V1 ο© ο½ ο¨ 0.100ο©ο¨ 2.00L ο© V1 ο½ 0.114 L 0.114 L of the 1.75 M stock solution would be put into a volumetric flask and then water would be added to the 2.00 L mark 22. a) Ca(NO3)2(s) ο Ca2+(aq) + 2NO3-(aq) 1L V ο½ 100.0mL ο¨ 1000 mL ο© ο½ 0.1000L Calculate the molarity of Ca2+ nCa2ο« ο½ 0.100mol Ca ο¨ NO3 ο©2 Mο½ nNOο ο½ 0.100mol Ca ο¨ NO3 ο©2 Mο½ 1mol Ca 2ο« 1mol Ca ο¨ NO3 ο©2 ο© ο½ 0.100mol Ca 2ο« n 0.100mol ο½ ο½ 1.00M Ca 2ο« V 0.1000 L Calculate the molarity of NO33 ο¨ ο¨ 2 mol NO3ο 1mol Ca ο¨ NO3 ο©2 ο© ο½ 0.200mol NO ο 3 n 0.200mol ο½ ο½ 2.00M NO3ο V 0.1000 L 2 b) Na2SO4(s) ο 2Na+(aq) + SO42-(aq) V ο½ 1.25L Calculate the molarity of Na+ nNaο« ο½ 2.5mol Na2 SO4 Mο½ ο¨ nSO2ο ο½ 2.5mol Na2 SO4 4 c) ο© ο½ 5.0mol Na ο« n 5.0mol ο½ ο½ 4.0M Na ο« V 1.25L Calculate the molarity of SO42- Mο½ 2 mol Na ο« 1mol Na2 SO4 ο¨ 1mol SO42ο 1mol Na2 SO4 ο© ο½ 2.5mol SO 2ο 4 n 2.5mol ο½ ο½ 2.0M SO42ο V 1.25L NH4Cl(s) ο NH4+(aq) + Cl-(aq) 1L V ο½ 500.0mL ο¨ 1000 mL ο© ο½ 0.5000L Calculate the molarity of NH4+ g M NH4Cl ο½ 53.50 mol g NH4Cl ο mol NH4Cl ο mol NH4+ 5.00 g NH 4Cl Mο½ ο¨ ο©ο¨ 1mol NH 4Cl 53.50 g NH 4Cl 5.00 g NH 4Cl d) ο« 4 n 0.0935mol ο½ ο½ 0.187 M NH 4ο« V 0.5000 L Calculate the molarity of Clg NH4Cl ο mol NH4Cl ο mol Cl- Mο½ ο© ο½ 0.0935mol NH 1mol NH 4ο« 1mol NH 4Cl ο¨ 1mol NH 4Cl 53.50 g NH 4Cl ο©ο¨ 1mol Cl ο 1mol NH 4Cl ο© ο½ 0.0935mol Cl ο n 0.0935mol ο½ ο½ 0.187 M Cl ο V 0.5000 L K3PO4(s) ο 3K+(aq) + PO43-(aq) 1L V ο½ 250.0mL ο¨ 1000 mL ο© ο½ 0.2500L Calculate the molarity of K+ g M K3PO4 ο½ 212.27 mol g K3PO4 ο mol K3PO4 ο mol K+ 1.00 g K3 PO4 Mο½ ο¨ 1mol K3 PO4 212.27 g K3 PO4 ο©ο¨ 3 mol K ο« 1mol K3 PO4 ο« n 0.0141mol ο½ ο½ 0.0564M K ο« V 0.2500 L Calcualte the molarity of PO43g K3PO4 ο mol K3PO4 ο mol PO4- 1.00 g K3 PO4 Mο½ ο© ο½ 0.0141mol K ο¨ 1mol K3 PO4 212.27 g K3 PO4 ο©ο¨ 1mol PO43ο 1mol K3 PO4 ο© ο½ 0.00471mol PO 3ο 4 n 0.00471mol ο½ ο½ 0.0188M PO43ο V 0.2500 L 3 23. Calculate the number of moles of Na+ in 70.0 mL of 3.0 M Na2CO3 n V 1L V ο½ 70.0mL ο¨ 1000 mL ο© ο½ 0.0700 L Mο½ nNa2CO3 ο½ MV ο½ ο¨ 3.0M ο©ο¨ 0.0700 L ο© ο½ 0.21mol Na2CO3 nNaο« ο½ 0.21mol Na2CO3 ο¨ 2 mol Na ο« 1mol Na2CO3 ο© ο½ 0.42mol Na ο« Calculate the number of moles of Na+ in 30.0 mL of 1.0 M NaHCO3 n V 1L V ο½ 30.0mL ο¨ 1000 mL ο© ο½ 0.0300 L Mο½ nNa2CO3 ο½ MV ο½ ο¨1.0M ο©ο¨ 0.0300 L ο© ο½ 0.030mol NaHCO3 nNaο« ο½ 0.030mol NaHCO3 ο¨ 1mol Na ο« 1mol NaHCO3 ο© ο½ 0.030mol Na ο« Calculate total moles of Na+ ntotal ο½ 0.42mol ο« 0.030mol ο½ 0.45mol Na ο« Calculate the total volume Vtotal ο½ 0.0700L ο« 0.0300L ο½ 0.1000L Calculate the molarity of Na+ ions Mο½ 24. n 0.45mol ο½ ο½ 4.5M Na ο« V 0.1000 L Calculate the molarity of the (NH4)2SO4 stock solution g M ( NH 4 )2 SO4 ο½ 132.20 mol n( NH 4 )2 SO4 ο½ 25.0 g ο¨ 1mol ( NH 4 )2 SO4 132.20 g ( NH 4 )2 SO4 Calculate the molarity of the NH4+ 4 2 4 in the stock solution nNH ο« ο½ 0.189mol ( NH 4 ) 2 SO4 4 ο© ο½ 0.189mol ( NH ) SO ο¨ 2 mol NH 4ο« 1mol ( NH 4 )2 SO4 ο© ο½ 0.378mol NH ο« 4 1L V ο½ 100.0mL ο¨ 1000 mL ο© ο½ 0.1000 L Mο½ n 0.378mol ο½ ο½ 3.78M NH 4 ο« V 0.1000 L Calculate the molarity of the NH4+ in final solution M 1V1 ο½ M 2V2 1L V1 ο½ 10.00mL ο¨ 1000 mL ο© ο½ 0.01000 L 1L V2 ο½ 10.00mL ο« 50.00mL ο½ 60.00mL ο¨ 1000 mL ο© ο½ 0.06000 L ο¨ 3.78M ο©ο¨ 0.01000 L ο© ο½ M 2 ο¨ 0.06000 L ο© M ο½ 0.630M NH 4ο« 4 Calculate the molarity of the SO42- in the stock solution nSO 2ο ο½ 0.189mol ( NH 4 )2 SO4 4 M SO 2ο ο½ 4 ο¨ 1mol SO42ο 1mol ( NH 4 )2 SO4 ο© ο½ 0.189mol SO 2ο 4 n 0.189mol ο½ ο½ 1.89M SO4 2ο V 0.1000 L Calculate the molarity of the SO42- in the final solution M1V1 ο½ M 2V2 ο¨1.89M ο©ο¨ 0.01000 L ο© ο½ M 2 ο¨ 0.06000 L ο© M ο½ 0.315M SO4 2ο 26. Stock Solution g M Mn ο½ 54.94 mol nMn ο½ 1.584 g Mn ο¨ 1mol Mn 54.94 g Mn ο© ο½ 0.02883mol Mn All of the Mn came from the Mn(s) therefore πππ = πππ2+ 2+ nMn2ο« ο½ 0.02883mol Mn Mο½ ο¨ 1mol Mn2ο« 1mol Mn ο© ο½ 0.02883mol Mn 2ο« n 0.02883mol ο½ ο½ 0.02883M Mn 2ο« V 1.000 L Solution A M 1V1 ο½ M 2V2 1L V1 ο½ 50.00mL ο¨ 1000 mL ο© ο½ 0.05000 L 1L V2 ο½ 1000.0mL ο¨ 1000 mL ο© ο½ 1.0000 L ο¨ 0.02883M ο©ο¨ 0.05000 L ο© ο½ M 2 ο¨1.0000 L ο© M ο½ 0.001442M Mn 2ο« Solution B M 1V1 ο½ M 2V2 1L V1 ο½ 10.00mL ο¨ 1000 mL ο© ο½ 0.01000 L 1L V2 ο½ 250.0mL ο¨ 1000 mL ο© ο½ 0.2500 L ο¨ 0.001442M ο©ο¨ 0.01000 L ο© ο½ M 2 ο¨ 0.2500 L ο© M ο½ 5.766 ο΄10ο5 M Mn 2ο« Solution C M 1V1 ο½ M 2V2 1L V1 ο½ 10.00mL ο¨ 1000 mL ο© ο½ 0.01000 L 1L V2 ο½ 500.0mL ο¨ 1000 mL ο© ο½ 0.5000 L ο¨ 5.766 ο΄10 ο5 M ο© ο¨ 0.01000 L ο© ο½ M 2 ο¨ 0.5000 L ο© M ο½ 1.153 ο΄10ο6 M Mn 2ο« 5 30. Reaction 1: Pb(NO3)2(s) ο Pb(NO3)2(aq) and KI(s) ο KI(aq) Reaction 2: Pb(NO3)2(aq) + 2KI(aq) ο 2KNO3(aq) + PbI2(s) Reaction 2 complete ionic equation: Pb2+(aq)+2NO3-(aq)+2K+(aq)+2I-(aq) ο 2K+(aq)+2NO3-(aq)+PbI2(s) Yes the solution will still conduct electricity because there will be K+ and NO3- ions in solutions. Note: all of the Pb2+ moles (1.0 mol) and the I- moles (2.0 mol) will go into forming the solid therefore, there will be none of these ions in solution. 33. a) b) c) d) e) (NH4)2SO4(aq) + Ba(NO3)2(aq) ο 2NH4NO3(aq) + BaSO4(s) 2NH4+(aq) + SO42-(aq) + Ba2+(aq) + 2NO3-(aq) ο 2NH4+(aq) + 2NO3-(aq) + BaSO4(s) SO42-(aq) + Ba2+(aq) ο BaSO4(s) Pb(NO3)2(aq) + 2NaCl(aq) ο 2NaNO3(aq) + PbCl2(s) Pb2+(aq) + 2NO3-(aq) + 2Na+(aq) + 2Cl-(aq) ο 2NO3-(aq) + 2Na+(aq) + PbCl2(s) Pb2+(aq) + 2Cl-(aq) ο PbCl2(s) Na3PO4(aq) + 3KNO3(aq) ο 3NaNO3(aq) + K3PO4(aq) 3Na+(aq) + PO43-(aq) + 3K+(aq) + 3NO3-(aq) ο 3Na+(aq) + 3NO3-(aq) + 3K+(aq) + PO43-(aq) No reaction NaBr(aq) + RbCl(aq) ο NaCl(aq) + RbBr(aq) Na+(aq) + Br-(aq) + Rb+(aq) + Cl-(aq) ο Na+(aq) + Cl-(aq) + Rb+(aq) + Br-(aq) No reaction CuCl2(aq) + 2NaOH(aq) ο Cu(OH)2(s) + 2NaCl(aq) Cu2+(aq) + 2Cl-(aq) + 2Na+(aq) + 2OH-(aq) ο Cu(OH)2(s) + 2Na+(aq) + 2Cl-(aq) Cu2+(aq) + 2OH-(aq) ο Cu(OH)2(s) 34. There are multiple ways to do these problems; this is one way to do them a) 1. Add NaCl to the solution this will cause AgCl to precipitate 2. Add Na2SO4 to the solution this will cause BaSO4 to precipitate 3. The Cr3+ ions will be left in solution b) 1. Add Li2SO4 to the solution this will cause PbSO4 to precipitate 2. Add LiCl to the solution this will cause AgCl to precipitate 3. The Cu2+ ions will be left in solution c) 1. Add CaCl2 to the solution this will cause Hg2Cl2 to precipitate 2. The Ni2+ ions will be left in solution 36. There are multiple ways to do these problems; this is one way to do them. a) 3NaOH(aq) + FeCl3(aq) ο Fe(OH)3(s) + 3NaCl(aq) b) Hg2(NO3)2(aq) + BaCl2(aq) ο Hg2Cl2(s) + Ba(NO3)2(aq) c) K2SO4(aq) + Pb(NO3)2(aq) ο PbSO4(s) + 2KNO3(aq) d) (NH4)2CrO4(aq) + BaCl2(aq) ο BaCrO4(s) + 2NH4Cl(aq) 38. 2Na3PO4(aq) + 3Pb(NO3)2(aq) ο 6NaNO3(aq) + Pb3(PO4)2(s) mL Pb(NO3)2 ο mol Pb(NO3)2 ο mol Na3PO4 ο L Na3PO4 1L 150.0mL Pb( NO3 )2 ο¨ 1000 mL ο© ο¨ 0.250 mol Pb ( NO3 )2 1L Pb ( NO3 )2 ο©ο¨ 2 mol Na3 PO4 3mol Pb ( NO3 )2 ο©ο¨ 1L Na3 PO4 0.100 mol Na3PO4 ο© ο½ 0.250L 6 39. 2AgNO3(aq) + CaCl2(aq) ο 2AgCl(s) + Ca(NO3)2(aq) This is a limiting reagent problem Calculate the moles of AgNO3. 1L 100.0mL AgNO3 ο¨ 1000 mL ο© Calculate the moles of CaCl2. 1L 100.0mL CaCl2 ο¨ 1000 mL ο© ο¨ ο¨ 0.20 mol AgNO3 1L AgNO3 0.15 mol CaCl2 1L CaCl2 ο© ο½ 0.020mol AgNO 3 ο© ο½ 0.015mol CaCl 2 Calculate the number of moles of CaCl2 needed to fully react 0.026 mol AgNO3. 0.020mol AgNO3 ο¨ 1mol CaCl2 2 mol AgNO3 ο© ο½ 0.010mol CaCl 2 Since we have 0.015 mol of CaCl2 the AgNO3 is the limiting reagent. Calculate the grams of AgCl produced. g M AgCl ο½ 143.32 mol 0.020mol AgNO3 ο¨ 2 mol AgCl 2 mol AgNO3 ο©ο¨ 143.32 g AgCl 1mol AgCl ο© ο½ 2.9 g AgCl The limiting reagent is AgNO3 and all of the Ag+ goes into forming AgCl(s) therefore no Ag+ ions will be in solution. Since Ca(NO3)2 is aqueous all of the Ca2+ and NO3- ions will be in solution. Only some of the Cl- ions will be in solution Concentration of Ag+ ion 0.0 M Ag+ Concentration of NO3- ions 1L V ο½ 100.0mL ο« 100.0mL ο½ 200.0mL ο¨ 1000 mL ο© ο½ 0.2000 L n ο½ 0.020mol AgNO3 Mο½ 1mol NO3ο 1mol AgNO3 ο© 0.020mol NO ο 3 n 0.020mol ο½ ο½ 0.10M NO3ο V 0.2000 L Concentration of Ca2+ ions n ο½ 0.015mol CaCl2 Mο½ ο¨ ο¨ 1mol Ca 2ο« 1mol CaCl2 ο© 0.015mol Ca 2ο« n 0.015mol ο½ ο½ 0.075M Ca 2ο« V 0.2000 L Calculate the moles of Cl-. Calculate the initial moles of Cl-. n ο½ 0.015mol CaCl2 ο¨ 2 mol Cl ο 1mol CaCl2 ο© 0.030mol Cl ο Calculate the moles of Cl- used up in making the AgCl. nCl ο ο½ 2.9 g AgCl ο¨ 1mol AgCl 143.32 g AgCl ο©ο¨ 1mol Cl ο 1mol AgCl ο© ο½ 0.020mol Cl ο Calculate the moles of Cl- left in solution. n ο½ 0.030mol ο 0.020mol ο½ 0.010mol Mο½ n 0.010mol ο½ ο½ 0.050M Cl ο V 0.2000 L 7 41. Na2CrO4(aq) + 2AgNO3(aq) ο 2NaNO3(aq) + Ag2CrO4(s) mL AgNO3 ο g Na2CrO4 mL AgNO3 ο mol AgNO3 ο mol Na2CrO4 ο g Na2CrO4 g 1L M Na2CrO4 ο½ 161.98 mol 75.0mL AgNO3 ο¨ 1000 mL ο© 45. ο¨ 0.1mol AgNO3 1L AgNO3 ο©ο¨ 1mol Na2CrO4 2 mol AgNO3 ο©ο¨ 161.98 g Na2CrO4 1mol Na2CrO4 ο© ο½ 0.607 g Na CrO 2 4 g BaSO4 ο g C7H5NO3S (per tablet) g BaSO4 ο mol BaSO4 ο mol S (in BaSO4) ο mol S (in C7H5NO3S) ο mol C7H5NO3S ο g C7H5NO3S g M BaSO4 ο½ 233.40 mol g M C7 H 5 NO3 S ο½ 183.20 mol 0.5032 g BaSO4 ο¨ 1mol BaSO4 233.40 g BaSO4 ο©ο¨ 1mol S 1mol BaSO4 ο©ο¨ 1mol S ( C7 H5 NO3 S ) 1mol S ( BaSO4 ) ο©ο¨ 1mol C7 H5 NO3 S 1mol S ο©ο¨ 183.20 g C7 H5 NO3 S 1mol C7 H5 NO3 S ο© ο½ 0.3950g C H NO S 7 5 3 This is the amount of saccharin in 10 tablets therefore there is 0.3950 g of saccharin in one tablet. The mass of 10 tablets is 0.5032 g and the mass of the saccharin in 10 tablets is 0.3950 g ο½ .03950 g saccharin per tablet 10 The average mass % saccharin ο¦ 0.3950 g οΆ ο§ ο·100% ο½ 67.02% ο¨ 0.5894 g οΈ 47. M2SO4(aq) + CaCl2(aq) ο 2MCl(aq) + CaSO4(s) g CaSO4 ο mol M2SO4 g CaSO4 ο mol CaSO4 ο mol M2SO4 g M CaSO4 ο½ 136.15 mol 1.36 g CaSO4 ο¨ 1mol CaSO4 136.15 g CaSO4 ο©ο¨ 1mol M 2 SO4 1mol CaSO4 ο© ο½ 0.00999mol M SO 2 4 m 1.42 g g ο½ ο½ 142 mol n 0.00999mol ο½ 2M M ο« M S ο« 4M O M M 2 SO4 ο½ M M 2 SO4 ο¨ g g g 142 mol ο½ 2M M ο« 32.07 mol ο« 4 16.00 mol ο© g M M ο½ 23 mol Since the molar mass is 23 the metal is sodium (Na) 51. V NaOH ο mol NaOH ο mol acid ο V acid 1L 50.00mL NaOH ο¨ 1000 mL ο© ο½ 0.0500 L NaOH mol NaOH 0.0500L NaOH ο¨ 0.100 ο© ο½ 0.00500mol NaOH 1L NaOH a) NaOH(aq) + HCl(aq) ο NaCl(aq) + H2O(l) b) 2NaOH(aq) + H2SO4(aq) ο Na2SO4(aq) + 2H2O(l) 1mol HCl 1L HCl 0.00500mol NaOH ο¨ 1mol NaOH ο©ο¨ 0.100 mol HCl ο© ο½ 0.0500 L HCl 0.00500mol NaOH ο¨ 1mol H 2 SO4 2 mol NaOH ο©ο¨ 1L H 2 SO4 0.100 mol H 2 SO4 ο© ο½ 0.0250L H SO 2 4 8 c) 3NaOH(aq) + H3PO4(aq) ο Na3PO4(aq) + 3H2O(l) ο¨ 0.00500mol NaOH d) ο© ο½ 0.00833L H PO 3 4 ο¨ 1mol HNO3 1mol NaOH ο©ο¨ 1L HNO3 0.150 mol HNO3 ο© ο½ 0.0333L HNO 3 ο¨ 1mol HC2 H3O2 1mol NaOH ο©ο¨ 1L HC2 H3O2 0.200 mol HC2 H3O2 ο© ο½ 0.0250L HC H O 2 3 2 2NaOH(aq) + H2SO4(aq) ο Na2SO4(aq) + 2H2O(l) 0.00500L NaOH 54. 1L H3 PO4 0.200 mol H3 PO4 NaOH(aq) + HC2H3O2(aq) ο NaC2H3O2(aq) + H2O(l) 0.00500L NaOH f) ο©ο¨ NaOH(aq) + HNO3(aq) ο NaNO3(aq) + H2O(l) 0.00500L NaOH e) 1mol H3 PO4 3mol NaOH ο¨ 1mol H 2 SO4 2 mol NaOH ο©ο¨ 1L H 2 SO4 0.300 mol H 2 SO4 ο© ο½ 0.00833L H SO 2 4 NaOH(aq) + KHC8H4O4(aq) ο NaKC8H4O4(aq) + H2O(l) g KHP ο mol KHP ο mol NaOH 0.1082 g KHP ο¨ 1mol KHP 204.22 g KHP ο©ο¨ 1mol NaOH 1mol KHP ο© ο½ 5.298 ο΄10ο4 mol NaOH Calculate the molarity of the NaOH solution 1L V ο½ 34.67mL ο¨ 1000 mL ο© ο½ 0.03467 L Mο½ 56. n 5.298 ο΄10ο4 mol ο½ ο½ 0.01528M NaOH V 0.03467 L 3Ba(OH)2(aq) + 2H3PO4(aq) ο Ba3(PO4)2(aq) + 6H2O(l) V H3PO4 ο mol H3PO4 ο mol Ba(OH)2 ο V Ba(OH)2 1L 14.20mL H3 PO4 ο¨ 1000 mL ο© ο½ 0.01420 L H 3 PO4 0.01420L H3 PO4 57. ο¨ 0.141mol H3 PO4 1L H3 PO4 ο©ο¨ 3mol Ba ( OH )2 2 mol H3 PO4 ο©ο¨ 1L Ba ( OH )2 0.0521mol Ba (OH )2 HC2H3O2(aq) + NaOH(aq) ο NaC2H3O2(aq) + H2O(l) V NaOH ο mol NaOH ο mol HC2H3O2 0.5062 mol NaOH 1L 16.58mL NaOH ο¨ 1000 ο© mL ο©ο¨ 1L NaOH ο¨ 1mol HC2 H3O2 1mol NaOH ο© ο½ 0.0576L Ba(OH ) 2 ο© ο½ 0.008393mol HC H O 2 3 2 Calculate the molarity of the acetic acid 1L V ο½ 10.0mL ο¨ 1000 mL ο© ο½ 0.0100 L Mο½ n 0.008393mol ο½ ο½ 0.8393M HC2 H 3O2 V 0.0100 L Calculate the mass of the acetic acid g M HC2 H3O2 ο½ 60.06 mol 0.008393mol HC2 H 3O2 ο¨ 60.06 g HC2 H 3O2 1mol HC2 H3O2 ο© ο½ 0.5041g Calculate the mass of the vinegar in 10.0 mL 10.0mL ο¨ ο©ο¨ 1cm3 1mL 1.006 g 1cm3 ο© ο½ 10.06g Calculate the mass % ο¦ 0.5041 οΆ ο§ ο·100% ο½ 5.011% ο¨ 10.06g οΈ 9 61. This is a limiting reagent problem. Find out if OH- or H+ is present in excess. 2HCl(aq) + Ba(OH)2(aq)ο BaCl2(aq) + 2H2O(l) Determine the initial moles of H+ 0.250 mol HCl 1L 75.0mL HCl ο¨ 1000 ο© mL ο©ο¨ 1L HCl Determine the initial moles of OH1L 225.0mL Ba(OH )2 ο¨ 1000 mL ο© ο¨ ο¨ 1mol H ο« 1mol HCl ο© ο½ 0.0188mol H 0.0550 mol Ba ( OH )2 1L Ba ( OH )2 ο©ο¨ 2 mol OH ο 1mol Ba ( OH )2 ο« ο© ο½ 0.0248mol OH ο Calculate the number of moles of OH- needed to fully react with 0.0188 mol H+ 0.0188mol H ο« ο¨ 1mol HCl 1mol H ο« ο©ο¨ 1mol Ba ( OH )2 2 mol HCl ο©ο¨ 2 mol OH ο 1mol Ba ( OH )2 ο© ο½ 0.0188mol OH ο Since we have 0.0248 moles of OH-, H+ is the limiting reagent and will be completely consumed. There will be 0.0060 mol (0.0248 mol - 0.0188 mol) of OH- left over. Calculate the concentration of OH- left in solution. 1L V ο½ 75.0mL ο« 225.0mL ο½ 300.0mL ο¨ 1000 mL ο© ο½ 0.3000 L Mο½ n 0.0060mol ο½ ο½ 0.020M OH ο V 0.3000 L 65. a) c) d) e) g) i) K +1, Mn +7, and O -2 b) Ni +4, and O -2 Fe +2 NH4 +1 (N -3 and H +1), and HPO4 -2 (H +1, P +5, and O -2) P +3, and O -2 f) Fe +8/3, and O-2 Xe +6, O -2, and F -1 h) S +4, and F -1 C +2, and O -2 j) C 0, H +1, and O -2 67. a) c) e) g) i) k) l) Sr 2+, Cr +6, and O -2 b) Cu +2, and Cl -1 O0 d) H +1 and O -1 (peroxide) Mg +2, C +4, and O -2 f) Ag 0 Pb 2+, and SO3 -2 (S +4 and O -2) h) Pb 4+, and O 2Na +1, C +3, and O -2 j) C +4, and O -2 NH4 +1 (N -3 and H +1), Ce 4+, and SO4 2- (S +6 and O -2) Cr +3, and O -2 68. Since they ask for substance oxidized they want entire compound not just element oxidized a) Redox reaction Element Beginning Oxidation # Ending Oxidation # O 0 -2 C -4 +4 O is reduced, O2 is species reduced C is oxidized, CH4 is species oxidized O2 is the oxidizing agent CH4 is the reducing agent 10 b) c) d) e) f) g) h) i) Redox reaction Element Beginning Oxidation # Zn 0 H +1 Zn is oxidized H is reduced, HCl is species reduced Zn is the reducing agent HCl is the oxidizing agent Not a redox reaction Redox Reaction Element Beginning Oxidation # O 0 N +2 O is reduced, O3 is species reduced N is oxidized, NO is species oxidized O3 is the oxidizing agent NO is the reducing agent Redox Reaction Element Beginning Oxidation # O -1 O -1 O is reduced, H2O2 is species reduced O is oxidized, H2O2 is species oxidized H2O2 is the oxidizing agent H2O2 is the reducing agent Redox Reaction Element Beginning Oxidation # Cu +1 Cu +1 Cu is reduced, CuCl is species reduced Cu is oxidized, CuCl is species oxidized CuCl is the oxidizing agent CuCl is the reducing agent Not a Redox Reaction Not a Redox Reaction Redox Reaction Element Beginning Oxidation # Si +4 Mg 0 Si is reduced, SiCl4 is species reduced Mg is oxidized SiCl4 is the oxidizing agent Mg is the reducing agent Ending Oxidation # +2 0 Ending Oxidation # -2 +4 Ending Oxidation # 0 -2 Ending Oxidation # 0 +2 Ending Oxidation # 0 +2 11 71. a) b) c) d) e) Balance Oxidation ½ Reaction Cu ο Cu2+ Cu ο Cu2+ + 2eBalance Reduction ½ Reaction NO3- ο NO NO3- ο NO + 2H2O NO3- + 4H+ ο NO + 2H2O NO3- + 4H+ + 3e-ο NO + 2H2O Total Balanced Equation 3(Cu ο Cu2+ + 2e-) 2(NO3- + 4H+ +3e-ο NO + 2H2O) 3Cu(s) + 2NO3-(aq) + 8H+(aq) ο 3Cu2+(aq) + 2NO(g) + 4H2O(l) Balance Recution ½ Reaction Cr2O72- ο Cr3+ Cr2O72- ο 2Cr3+ Cr2O72- ο 2Cr3+ + 7H2O Cr2O72- + 14H+ ο 2Cr3+ + 7H2O Cr2O72- + 14H+ + 6e- ο 2Cr3+ + 7H2O Balance Oxidation ½ Reaction Cl- ο Cl2 2Cl- ο Cl2 2Cl- ο Cl2 + 2eTotal Balanced Equation Cr2O72- + 14H+ + 6e- ο 2Cr3+ + 7H2O 3(2Cl- ο Cl2 + 2e-) Cr2O72-(aq) + 14H+(aq) + 6Cl-(aq) ο 2Cr3+(aq) + 7H2O(l) + 3Cl2(g) Balance Reduction ½ Reaction PbO2 + H2SO4 ο PbSO4 PbO2 + H2SO4 ο PbSO4 + 2H2O PbO2 + H2SO4 + 2H+ ο PbSO4 + 2H2O PbO2 + H2SO4 + 2H+ + 2e- ο PbSO4 + 2H2O Balance Oxidation ½ Reaction Pb + H2SO4 ο PbSO4 Pb + H2SO4 ο PbSO4 + 2H+ Pb + H2SO4 ο PbSO4 + 2H+ + 2eTotal Balanced Equation PbO2 + H2SO4 + 2H+ + 2e- ο PbSO4 + 2H2O Pb + H2SO4 ο PbSO4 + 2H+ + 2ePbO2(s) + 2H2SO4(aq) + Pb(s) ο 2PbSO4(s)+ 2H2O(l) Skip this equation. You will not be able to balence this because there is no sodium on the products side of the equation. Balance Reducation ½ Reaction H3AsO4 ο AsH3 H3AsO4 ο AsH3 + 4H2O H3AsO4 + 8H+ ο AsH3 + 4H2O H3AsO4 + 8H+ + 8e-ο AsH3 + 4H2O 12 f) g) h) Balance Oxidation ½ Reaction Zn ο Zn2+ Zn ο Zn2+ + 2eTotal Balanced Equation H3AsO4 + 8H+ + 8e-ο AsH3 + 4H2O 4(Zn ο Zn2++ 2e-) H3AsO4(aq) + 8H+(aq) + 4Zn(s)ο AsH3(g)+ 4H2O(l) + 4Zn2+(aq) Balance Oxidation ½ Reaction As2O3 ο H3AsO4 As2O3 ο 2H3AsO4 As2O3 + 5H2O ο 2H3AsO4 As2O3 + 5H2O ο 2H3AsO4 + 4H+ As2O3 + 5H2O ο 2H3AsO4 + 4H++ 4eBalance Reducation ½ Reaction NO3- ο NO NO3- ο NO + 2H2O NO3- + 4H+ ο NO + 2H2O NO3- + 4H+ +3e-ο NO + 2H2O Total Balanced Equation 3(As2O3 + 5H2O ο 2H3AsO4 + 4H++ 4e-) 4(NO3- + 4H+ +3e-ο NO + 2H2O) 3As2O3(s) + 7H2O(l) + 4NO3-(aq) + 4H+(aq) ο 6H3AsO4(aq) + 4NO(g) Balance Oxidation ½ Reaction Br- ο Br2 2Br- ο Br2 2Br- ο Br2 + 2eBalance Reducation ½ Reaction MnO4- ο Mn2+ MnO4- ο Mn2+ + 4H2O MnO4- + 8H+ ο Mn2+ + 4H2O MnO4- + 8H+ + 5e- ο Mn2+ + 4H2O Total Balanced Equation 5(2Br- ο Br2 + 2e-) 2(MnO4- + 8H+ + 5e- ο Mn2+ + 4H2O) 10Br-(aq) + 2MnO4-(aq) + 16H+(aq) ο 5Br2(l) + 2Mn2+(aq) + 8H2O(l) Balance Oxidation ½ Reaction CH3OH ο CH2O CH3OH ο CH2O + 2H+ CH3OH ο CH2O + 2H+ + 2eBalance Reducation ½ Reaction Cr2O72- ο Cr3+ Cr2O72- ο 2Cr3+ Cr2O72- ο 2Cr3+ + 7H2O Cr2O72- + 14H+ ο 2Cr3+ + 7H2O Cr2O72- + 14H+ + 6e- ο 2Cr3+ + 7H2O 13 Total Balance Equation 3(CH3OH ο CH2O + 2H+ + 2e-) Cr2O72- + 14H+ + 6e- ο 2Cr3+ + 7H2O 3CH3OH(aq) + Cr2O72-(aq) + 8H+(aq) ο 3CH2O(aq) + 2Cr3+(aq) + 7H2O(l) 72. a) b) c) Balance Oxidation ½ Reaction Al ο Al(OH)4Al + 4H2O ο Al(OH)4Al + 4H2O ο Al(OH)4- + 4H+ Al + 4H2O ο Al(OH)4- + 4H+ + 3eBalance Reducation ½ Reaction MnO4- ο MnO2 MnO4- ο MnO2 + 2H2O MnO4- + 4H+ ο MnO2 + 2H2O MnO4- + 4H+ + 3e-ο MnO2 + 2H2O Total Balanced Equation Al + 4H2O ο Al(OH)4- + 4H+ + 3eMnO4- + 4H+ + 3e-ο MnO2 + 2H2O Al(s) + 2H2O(l) + MnO4-(aq) ο Al(OH)4-(aq) + MnO2(s) Since there are no H+ in the equation the equation is the same for acid or basic conditions. Balance Reducation ½ Reaction ½Cl2 ο Cl½Cl2 + e-ο ClBalance Oxidation ½ Reaction ½Cl2 ο ClO½Cl2 + H2Oο ClO½Cl2 + H2O ο ClO- + 2H+ ½Cl2 + H2O ο ClO- + 2H+ + eTotal Balanced Equation ½Cl2 + e-ο Cl½Cl2 + H2O ο ClO- + 2H+ + eCl2(g) + H2O(l) ο Cl-(aq) + ClO-(aq) + 2H+(aq) Switch to basic Cl2(g) + H2O(l) + 2OH-(aq) ο Cl-(aq) + ClO-(aq) + 2H+(aq) + 2OH-(aq) Cl2(g) + 2OH-(aq) ο Cl-(aq) + ClO-(aq) + H2O(l) Balance Reducation ½ Reaction NO2- ο NH3 NO2- ο NH3 + 2H2O NO2- + 7H+ ο NH3 + 2H2O NO2- + 7H+ + 6e- ο NH3 + 2H2O Balance Oxidation ½ Reaction Al ο AlO2Al + 2H2O ο AlO2Al + 2H2O ο AlO2- + 4H+ Al + 2H2O ο AlO2- + 4H+ + 3e- 14 d) e) Total Balanced Equation NO2- + 7H+ + 6e- ο NH3 + 2H2O 2(Al + 2H2O ο AlO2- + 4H+ + 3e-) NO2-(aq) + 2Al(s) + 2H2O(l) ο NH3(g) + 2AlO2-(aq) + H+(aq) Switch to basic NO2-(aq) + 2Al(s) + 2H2O(l) + OH-(aq)ο NH3(g) + 2AlO2-(aq) + H+(aq) + OH-(aq) NO2-(aq) + 2Al(s) + H2O(l) + OH-(aq)ο NH3(g) + 2AlO2-(aq) Balance Reduction ½ Reaction MnO4- + S2- ο MnS MnO4- + S2- ο MnS + 4H2O MnO4- + S2- + 8H+ ο MnS + 4H2O MnO4- + S2- + 8H+ + 5e- ο MnS + 4H2O Balance Oxidation ½ Reaction S2- ο S S2- ο S + 2eTotal Balanced Equation 2(MnO4- + S2- + 8H+ + 5e- ο MnS + 4H2O) 5(S2- ο S + 2e-) 2MnO4-(aq) + 7S2-(aq) + 16H+(aq) ο 2MnS(s) + 8H2O(l) + 5S(s) Switch to Basic 2MnO4-(aq)+7S2-(aq)+16H+(aq)+16OH-(aq)ο 2MnS(s)+8H2O(l)+5S(s)+16OH-(aq) 2MnO4-(aq) + 7S2-(aq) + 8H2O(l) ο 2MnS(s) + 5S(s) + 16OH-(aq) Balance Reducation ½ Reaction CN- ο CNOCN- + H2O ο CNOCN- + H2O ο CNO- + 2H+ CN- + H2O ο CNO- + 2H+ + eBalance Oxidation ½ Reaction MnO4- ο MnO2 MnO4- ο MnO2 + 2H2O MnO4- + 4H+ ο MnO2 + 2H2O MnO4- + 4H+ + 3e-ο MnO2 + 2H2O Total Balanced Equatioin 3(CN- + H2O ο CNO- + 2H+ + e-) 2(MnO4- + 4H+ + 3e-ο MnO2 + 2H2O) 3CN-(aq) + 2MnO4-(aq) + 2H+(aq) ο 3CNO-(aq) + 2MnO2(s) + H2O(l) Switch to basic conditions 3CN-(aq) + 2MnO4-(aq) + 2H+(aq) + 2OH-(aq)ο 3CNO-(aq) + 2MnO2(s) + H2O(l) + 2OH-(aq) 3CN-(aq) + 2MnO4-(aq) + H2O(l)ο 3CNO-(aq) + 2MnO2(s) + 2OH-(aq) 75. 1st balance the equation Balance Reduction ½ Reaction MnO4- ο Mn2+ MnO4- ο Mn2+ + 4H2O MnO4- + 8H+ ο Mn2+ + 4H2O MnO4- + 8H+ + 5e- ο Mn2+ + 4H2O 15 Balance Oxidation ½ Reaction H2C2O4 ο CO2 H2C2O4 ο 2CO2 H2C2O4 ο 2CO2 + 2H+ H2C2O4 ο 2CO2 + 2H+ + 2eTotal Balanced Equation 2(MnO4- + 8H+ + 5e- ο Mn2+ + 4H2O) 5(H2C2O4 ο 2CO2 + 2H+ + 2e-) 2MnO4-(aq) + 6H+(aq) + 5H2C2O4(aq) ο 2Mn2+(aq) + 8H2O(l) + 10CO2(g) Calculate the moles of MnO4g H2C2O4 ο mol H2C2O4 ο mol MnO4g M H 2C2O4 ο½ 90.04 mol 0.1058 g H 2C2O4 ο¨ 1mol H 2C2O4 90.04 g H 2C2O4 ο©ο¨ 2 mol MnO4ο 5 mol H 2C2O4 ο© ο½ 4.700 ο΄10 ο4 mol MnO4ο Calculate the molarity of the MnO4- solution n V 1L V ο½ 28.97mL ο¨ 1000 mL ο© ο½ 0.02897 L Mο½ Mο½ 76. a) n 4.700 ο΄10ο4 mol ο½ ο½ 0.01622M MnO4ο V 0.02897 L Balance the equation Balance Reducation ½ Reaction MnO4- ο Mn2+ + 4H2O MnO4- + 8H+ ο Mn2+ + 4H2O MnO4- + 8H+ + 5e- ο Mn2+ + 4H2O Balance Oxidation ½ Reaction Fe2+ ο Fe3+ Fe2+ ο Fe3+ + eTotal Balanced Equation MnO4- + 8H+ + 5e- ο Mn2+ + 4H2O 5(Fe2+ ο Fe3+ + e-) MnO4-(aq) + 8H+(aq) + 5Fe2+(aq) ο Mn2+(aq) + 4H2O(l) + 5Fe3+(aq) Calculate the moles of Fe2+ V KMnO4 ο mol KMnO4 ο mol Fe2+ 1L 20.62mL KMnO4 ο¨ 1000 mL ο© ο¨ 0.0216 mol KMnO4 1L KMnO4 ο©ο¨ 5 mol Fe2ο« 1mol KMnO4 ο© ο½ 0.00222mol Fe 2ο« Calculate the molarity of the Fe2+ solution n V 1L V ο½ 50.00mL ο¨ 1000 mL ο© ο½ 0.05000 L Mο½ Mο½ n 0.00222mol ο½ ο½ 0.0445M Fe 2ο« V 0.05000 L 16 b) Balance the equation Balance Reduction ½ Reaction Cr2O72- ο Cr3+ Cr2O72- ο 2Cr3+ Cr2O72- ο 2Cr3+ + 7H2O Cr2O72- + 14H+ ο 2Cr3+ + 7H2O Cr2O72- + 14H+ + 6e- ο 2Cr3+ + 7H2O Balance Oxidation ½ Reaction Fe2+ ο Fe3+ Fe2+ ο Fe3+ + eTotal Balanced Equation Cr2O72- + 14H+ + 6e- ο 2Cr3+ + 7H2O 6(Fe2+ ο Fe3+ + e-) Cr2O72-(aq) + 14H+(aq) + 6Fe2+(aq) ο 2Cr3+(aq) + 7H2O(l) + 6Fe3+(aq) Calculate the V of K2CrO7 mol Fe2+ ο mol K2CrO7 ο V K2CrO7 0.00222mol Fe2ο« 84. ο¨ ο©ο¨ 1mol K2Cr2O7 6 mol Fe2ο« 1L K2Cr2O7 0.0150 mol K2Cr2O7 Al(NO3)3(aq) + 3KOH(aq) ο Al(OH)3(s) + 3KNO3(aq) This is a limiting reagent problem Determine the moles of Al(NO3)3 1L 50.0mL Al ο¨ NO3 ο©3 ο¨ 1000 mL ο© ο¨ 0.200 mol Al ο¨ NO3 ο©3 1L Al ο¨ NO3 ο©3 ο© ο½ 0.0247L K Cr O 2 2 7 ο© ο½ 0.0100mol Al ο¨ NO ο© 3 3 Determine the moles of KOH 0.100 mol KOH 1L 200.0mL KOH ο¨ 1000 ο© ο½ 0.0200mol KOH mL ο©ο¨ 1L KOH Determine how many moles of KOH are need to fully react 0.0100 mol Al(NO3)3 0.0100mol Al ο¨ NO3 ο©3 ο¨ 3mol KOH 1mol Al ο¨ NO3 ο©3 ο© ο½ 0.0300mol KOH Since we only have 0.0200 mol KOH the KOH is the limiting reagent Calculate the mass of Al(OH)3 produced g M Al (OH )3 ο½ 78.01 mol 0.0200mol KOH ο¨ 1mol Al ο¨ OH ο©3 3mol KOH ο©ο¨ 78.01g Al ο¨ OH ο©3 1mol Al ο¨ OH ο©3 ο© ο½ 0.520g Al ο¨OH ο© 3 17