Download Chapter 4

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Homework #3
Chapter 4
Types of Chemical Reactions and Solution Stoichiometry
11.
Determine the concentrations of the solutions
Solution A
4 π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ 
1.0 𝐿
= 4.0 π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ 
𝐿
Solution B
5 π‘π‘Žπ‘‘π‘–π‘π‘™π‘’π‘ 
4.0 𝐿
= 1.3
π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ 
𝐿
Solution C
4 π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ 
2.0 𝐿
= 2.0 π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ 
𝐿
Solution D
6 π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ 
2.0𝐿
= 3.0 π‘π‘Žπ‘Ÿπ‘‘π‘–π‘π‘™π‘’π‘ 
𝐿
Therefore, the order of solution from most to least concentrated is
solution A > solution D > solution C > solution B
13.
a)
b)
c)
d)
15.
Polar solutes will mix with water and nonpolar solutes will not. For polar solutes the
water molecules will orientate so that the H-atoms are lined up around the anion and
the O-atoms are lined up around the cation. If the solutes are liquids then you will see
only see one solution after water has been mixed with a polar solute and two layers
when water has been mixed with a nonpolar solute.
When KF is put into water all of it will dissociate into K+ and F- because it is a strong
electrolyte. When C6H12O6 dissolves in water it will stay as C6H12O6 molecules and not
dissociate into atoms/ions because C6H12O6 is a nonelectrolyte. The water molecules
will orientate themselves so that the H-atoms in the water are near the partially
negative locations in C6H12O6 and the O-atoms in the water are near the partially
positive regions of the molecule.
When RbCl is put into water it will dissociate in Rb+ and Cl- because it is a strong
electrolyte. When AgCl is put into solution it will stay as a solid because it is not soluble
in water.
HNO3 is a strong acid and will complete dissociate into H+ and NO3-. CO is a
nonelectrolyte and will not dissociate in water. The water molecules will orientate to
support the partially negative and positive regions of the molecule.
Determine the formula and ions of each of the names
a)
barium nitrate Ba(NO3)2 which is made up of Ba2+ and NO3matches with beaker iv
b)
sodium chloride NaCl which is made up of Na+ and Clmatches with beaker ii
c)
potassium carbonate K2CO3 which is made up of K+ and CO32matches with beaker iii
d)
magnesium sulfate MgSO4 which is made up of Mg2+ and SO42matches with beaker i
1
17.
a)
L NaOH οƒ  g NaOH
L NaOH οƒ  mol NaOH οƒ  g NaOH
g
M NaOH ο€½ 40.00 mol
mol NaOH
2.00 L  0.250

1L NaOH

40.00 g NaOH
1mol NaOH
 ο€½ 20.0 g NaOH
20.0 g of NaOH would be put into a volumetric flask and then water would be added to
the 2.00 L mark.
b)
M1V1 ο€½ M 2V2
1.00M V1  ο€½  0.250 2.00L 
V1 ο€½ 0.500 L
c)
0.500 L of the 1.00 M stock solution would be put into a volumetric flask and then water
would be added to the 2.00 L mark.
L K2CrO4 οƒ  g K2CrO4
L K2CrO4 οƒ mol K2CrO4 οƒ  g K2CrO4
g
M K2CrO4 ο€½ 194.20 mol
2.00 L K 2CrO4

0.100 mol K 2CrO4
1L K 2CrO4

194.20 g K 2CrO4
1mol K 2CrO4
 ο€½ 38.8g K CrO
2
4
38.8 g of K2CrO4 would be put into a volumetric flask and then water would be added to
the 2.00 L mark.
d)
M1V1 ο€½ M 2V2
1.75M V1  ο€½  0.100 2.00L 
V1 ο€½ 0.114 L
0.114 L of the 1.75 M stock solution would be put into a volumetric flask and then water
would be added to the 2.00 L mark
22.
a)
Ca(NO3)2(s) οƒ  Ca2+(aq) + 2NO3-(aq)
1L
V ο€½ 100.0mL  1000
mL  ο€½ 0.1000L
Calculate the molarity of Ca2+
nCa2 ο€½ 0.100mol Ca  NO3 2
Mο€½
nNOο€­ ο€½ 0.100mol Ca  NO3 2
Mο€½
1mol Ca 2
1mol Ca  NO3 2
 ο€½ 0.100mol Ca
2
n 0.100mol
ο€½
ο€½ 1.00M Ca 2
V
0.1000 L
Calculate the molarity of NO33


2 mol NO3ο€­
1mol Ca  NO3 2
 ο€½ 0.200mol NO
ο€­
3
n 0.200mol
ο€½
ο€½ 2.00M NO3ο€­
V
0.1000 L
2
b)
Na2SO4(s) οƒ  2Na+(aq) + SO42-(aq)
V ο€½ 1.25L
Calculate the molarity of Na+
nNa ο€½ 2.5mol Na2 SO4
Mο€½

nSO2ο€­ ο€½ 2.5mol Na2 SO4
4
c)
 ο€½ 5.0mol Na

n 5.0mol
ο€½
ο€½ 4.0M Na 
V 1.25L
Calculate the molarity of SO42-
Mο€½
2 mol Na 
1mol Na2 SO4

1mol SO42ο€­
1mol Na2 SO4
 ο€½ 2.5mol SO
2ο€­
4
n 2.5mol
ο€½
ο€½ 2.0M SO42ο€­
V 1.25L
NH4Cl(s) οƒ  NH4+(aq) + Cl-(aq)
1L
V ο€½ 500.0mL  1000
mL  ο€½ 0.5000L
Calculate the molarity of NH4+
g
M NH4Cl ο€½ 53.50 mol
g NH4Cl οƒ  mol NH4Cl οƒ  mol NH4+
5.00 g NH 4Cl
Mο€½


1mol NH 4Cl
53.50 g NH 4Cl
5.00 g NH 4Cl
d)

4
n 0.0935mol
ο€½
ο€½ 0.187 M NH 4
V
0.5000 L
Calculate the molarity of Clg NH4Cl οƒ  mol NH4Cl οƒ  mol Cl-
Mο€½
 ο€½ 0.0935mol NH
1mol NH 4
1mol NH 4Cl

1mol NH 4Cl
53.50 g NH 4Cl

1mol Cl ο€­
1mol NH 4Cl
 ο€½ 0.0935mol Cl
ο€­
n 0.0935mol
ο€½
ο€½ 0.187 M Cl ο€­
V
0.5000 L
K3PO4(s) οƒ  3K+(aq) + PO43-(aq)
1L
V ο€½ 250.0mL  1000
mL  ο€½ 0.2500L
Calculate the molarity of K+
g
M K3PO4 ο€½ 212.27 mol
g K3PO4 οƒ  mol K3PO4 οƒ  mol K+
1.00 g K3 PO4
Mο€½

1mol K3 PO4
212.27 g K3 PO4

3 mol K 
1mol K3 PO4

n 0.0141mol
ο€½
ο€½ 0.0564M K 
V
0.2500 L
Calcualte the molarity of PO43g K3PO4 οƒ  mol K3PO4 οƒ  mol PO4-
1.00 g K3 PO4
Mο€½
 ο€½ 0.0141mol K

1mol K3 PO4
212.27 g K3 PO4

1mol PO43ο€­
1mol K3 PO4
 ο€½ 0.00471mol PO
3ο€­
4
n 0.00471mol
ο€½
ο€½ 0.0188M PO43ο€­
V
0.2500 L
3
23.
Calculate the number of moles of Na+ in 70.0 mL of 3.0 M Na2CO3
n
V
1L
V ο€½ 70.0mL  1000
mL  ο€½ 0.0700 L
Mο€½
nNa2CO3 ο€½ MV ο€½  3.0M  0.0700 L  ο€½ 0.21mol Na2CO3
nNa ο€½ 0.21mol Na2CO3

2 mol Na 
1mol Na2CO3
 ο€½ 0.42mol Na

Calculate the number of moles of Na+ in 30.0 mL of 1.0 M NaHCO3
n
V
1L
V ο€½ 30.0mL  1000
mL  ο€½ 0.0300 L
Mο€½
nNa2CO3 ο€½ MV ο€½ 1.0M  0.0300 L  ο€½ 0.030mol NaHCO3
nNa ο€½ 0.030mol NaHCO3

1mol Na 
1mol NaHCO3
 ο€½ 0.030mol Na

Calculate total moles of Na+
ntotal ο€½ 0.42mol  0.030mol ο€½ 0.45mol Na 
Calculate the total volume
Vtotal ο€½ 0.0700L  0.0300L ο€½ 0.1000L
Calculate the molarity of Na+ ions
Mο€½
24.
n 0.45mol
ο€½
ο€½ 4.5M Na 
V 0.1000 L
Calculate the molarity of the (NH4)2SO4 stock solution
g
M ( NH 4 )2 SO4 ο€½ 132.20 mol
n( NH 4 )2 SO4 ο€½ 25.0 g

1mol ( NH 4 )2 SO4
132.20 g ( NH 4 )2 SO4
Calculate the molarity of the
NH4+
4 2
4
in the stock solution
nNH  ο€½ 0.189mol ( NH 4 ) 2 SO4
4
 ο€½ 0.189mol ( NH ) SO

2 mol NH 4
1mol ( NH 4 )2 SO4
 ο€½ 0.378mol NH

4
1L
V ο€½ 100.0mL  1000
mL  ο€½ 0.1000 L
Mο€½
n 0.378mol
ο€½
ο€½ 3.78M NH 4 
V
0.1000 L
Calculate the molarity of the NH4+ in final solution
M 1V1 ο€½ M 2V2
1L
V1 ο€½ 10.00mL  1000
mL  ο€½ 0.01000 L
1L
V2 ο€½ 10.00mL  50.00mL ο€½ 60.00mL  1000
mL  ο€½ 0.06000 L
 3.78M  0.01000 L  ο€½ M 2  0.06000 L 
M ο€½ 0.630M NH 4
4
Calculate the molarity of the SO42- in the stock solution
nSO 2ο€­ ο€½ 0.189mol ( NH 4 )2 SO4
4
M SO 2ο€­ ο€½
4

1mol SO42ο€­
1mol ( NH 4 )2 SO4
 ο€½ 0.189mol SO
2ο€­
4
n 0.189mol
ο€½
ο€½ 1.89M SO4 2ο€­
V
0.1000 L
Calculate the molarity of the SO42- in the final solution
M1V1 ο€½ M 2V2
1.89M  0.01000 L  ο€½ M 2  0.06000 L 
M ο€½ 0.315M SO4 2ο€­
26.
Stock Solution
g
M Mn ο€½ 54.94 mol
nMn ο€½ 1.584 g Mn

1mol Mn
54.94 g Mn
 ο€½ 0.02883mol Mn
All of the Mn came from the Mn(s) therefore 𝑛𝑀𝑛 = 𝑛𝑀𝑛2+
2+
nMn2 ο€½ 0.02883mol Mn
Mο€½

1mol Mn2
1mol Mn
 ο€½ 0.02883mol Mn
2
n 0.02883mol
ο€½
ο€½ 0.02883M Mn 2
V
1.000 L
Solution A
M 1V1 ο€½ M 2V2
1L
V1 ο€½ 50.00mL  1000
mL  ο€½ 0.05000 L
1L
V2 ο€½ 1000.0mL  1000
mL  ο€½ 1.0000 L
 0.02883M  0.05000 L  ο€½ M 2 1.0000 L 
M ο€½ 0.001442M Mn 2
Solution B
M 1V1 ο€½ M 2V2
1L
V1 ο€½ 10.00mL  1000
mL  ο€½ 0.01000 L
1L
V2 ο€½ 250.0mL  1000
mL  ο€½ 0.2500 L
 0.001442M  0.01000 L  ο€½ M 2  0.2500 L 
M ο€½ 5.766 ο‚΄10ο€­5 M Mn 2
Solution C
M 1V1 ο€½ M 2V2
1L
V1 ο€½ 10.00mL  1000
mL  ο€½ 0.01000 L
1L
V2 ο€½ 500.0mL  1000
mL  ο€½ 0.5000 L
 5.766 ο‚΄10
ο€­5
M   0.01000 L  ο€½ M 2  0.5000 L 
M ο€½ 1.153 ο‚΄10ο€­6 M Mn 2
5
30.
Reaction 1:
Pb(NO3)2(s) οƒ  Pb(NO3)2(aq) and KI(s) οƒ KI(aq)
Reaction 2:
Pb(NO3)2(aq) + 2KI(aq) οƒ  2KNO3(aq) + PbI2(s)
Reaction 2 complete ionic equation: Pb2+(aq)+2NO3-(aq)+2K+(aq)+2I-(aq)
οƒ 2K+(aq)+2NO3-(aq)+PbI2(s)
Yes the solution will still conduct electricity because there will be K+ and NO3- ions in solutions.
Note: all of the Pb2+ moles (1.0 mol) and the I- moles (2.0 mol) will go into forming the solid
therefore, there will be none of these ions in solution.
33.
a)
b)
c)
d)
e)
(NH4)2SO4(aq) + Ba(NO3)2(aq) οƒ  2NH4NO3(aq) + BaSO4(s)
2NH4+(aq) + SO42-(aq) + Ba2+(aq) + 2NO3-(aq) οƒ  2NH4+(aq) + 2NO3-(aq) + BaSO4(s)
SO42-(aq) + Ba2+(aq) οƒ  BaSO4(s)
Pb(NO3)2(aq) + 2NaCl(aq) οƒ  2NaNO3(aq) + PbCl2(s)
Pb2+(aq) + 2NO3-(aq) + 2Na+(aq) + 2Cl-(aq) οƒ  2NO3-(aq) + 2Na+(aq) + PbCl2(s)
Pb2+(aq) + 2Cl-(aq) οƒ  PbCl2(s)
Na3PO4(aq) + 3KNO3(aq) οƒ  3NaNO3(aq) + K3PO4(aq)
3Na+(aq) + PO43-(aq) + 3K+(aq) + 3NO3-(aq) οƒ  3Na+(aq) + 3NO3-(aq) + 3K+(aq) + PO43-(aq)
No reaction
NaBr(aq) + RbCl(aq) οƒ  NaCl(aq) + RbBr(aq)
Na+(aq) + Br-(aq) + Rb+(aq) + Cl-(aq) οƒ  Na+(aq) + Cl-(aq) + Rb+(aq) + Br-(aq)
No reaction
CuCl2(aq) + 2NaOH(aq) οƒ  Cu(OH)2(s) + 2NaCl(aq)
Cu2+(aq) + 2Cl-(aq) + 2Na+(aq) + 2OH-(aq) οƒ  Cu(OH)2(s) + 2Na+(aq) + 2Cl-(aq)
Cu2+(aq) + 2OH-(aq) οƒ  Cu(OH)2(s)
34.
There are multiple ways to do these problems; this is one way to do them
a)
1. Add NaCl to the solution this will cause AgCl to precipitate
2. Add Na2SO4 to the solution this will cause BaSO4 to precipitate
3. The Cr3+ ions will be left in solution
b)
1. Add Li2SO4 to the solution this will cause PbSO4 to precipitate
2. Add LiCl to the solution this will cause AgCl to precipitate
3. The Cu2+ ions will be left in solution
c)
1. Add CaCl2 to the solution this will cause Hg2Cl2 to precipitate
2. The Ni2+ ions will be left in solution
36.
There are multiple ways to do these problems; this is one way to do them.
a)
3NaOH(aq) + FeCl3(aq) οƒ  Fe(OH)3(s) + 3NaCl(aq)
b)
Hg2(NO3)2(aq) + BaCl2(aq) οƒ  Hg2Cl2(s) + Ba(NO3)2(aq)
c)
K2SO4(aq) + Pb(NO3)2(aq) οƒ  PbSO4(s) + 2KNO3(aq)
d)
(NH4)2CrO4(aq) + BaCl2(aq) οƒ  BaCrO4(s) + 2NH4Cl(aq)
38.
2Na3PO4(aq) + 3Pb(NO3)2(aq) οƒ  6NaNO3(aq) + Pb3(PO4)2(s)
mL Pb(NO3)2 οƒ  mol Pb(NO3)2 οƒ  mol Na3PO4 οƒ  L Na3PO4
1L
150.0mL Pb( NO3 )2  1000
mL 

0.250 mol Pb ( NO3 )2
1L Pb ( NO3 )2

2 mol Na3 PO4
3mol Pb ( NO3 )2

1L Na3 PO4
0.100 mol Na3PO4
 ο€½ 0.250L
6
39.
2AgNO3(aq) + CaCl2(aq) οƒ  2AgCl(s) + Ca(NO3)2(aq)
This is a limiting reagent problem
Calculate the moles of AgNO3.
1L
100.0mL AgNO3  1000
mL 
Calculate the moles of CaCl2.
1L
100.0mL CaCl2  1000
mL 


0.20 mol AgNO3
1L AgNO3
0.15 mol CaCl2
1L CaCl2
 ο€½ 0.020mol AgNO
3
 ο€½ 0.015mol CaCl
2
Calculate the number of moles of CaCl2 needed to fully react 0.026 mol AgNO3.
0.020mol AgNO3

1mol CaCl2
2 mol AgNO3
 ο€½ 0.010mol CaCl
2
Since we have 0.015 mol of CaCl2 the AgNO3 is the limiting reagent.
Calculate the grams of AgCl produced.
g
M AgCl ο€½ 143.32 mol
0.020mol AgNO3

2 mol AgCl
2 mol AgNO3

143.32 g AgCl
1mol AgCl
 ο€½ 2.9 g AgCl
The limiting reagent is AgNO3 and all of the Ag+ goes into forming AgCl(s) therefore no Ag+ ions
will be in solution. Since Ca(NO3)2 is aqueous all of the Ca2+ and NO3- ions will be in solution.
Only some of the Cl- ions will be in solution
Concentration of Ag+ ion
0.0 M Ag+
Concentration of NO3- ions
1L
V ο€½ 100.0mL  100.0mL ο€½ 200.0mL  1000
mL  ο€½ 0.2000 L
n ο€½ 0.020mol AgNO3
Mο€½
1mol NO3ο€­
1mol AgNO3
 0.020mol NO
ο€­
3
n 0.020mol
ο€½
ο€½ 0.10M NO3ο€­
V
0.2000 L
Concentration of Ca2+ ions
n ο€½ 0.015mol CaCl2
Mο€½


1mol Ca 2
1mol CaCl2
 0.015mol Ca
2
n 0.015mol
ο€½
ο€½ 0.075M Ca 2
V 0.2000 L
Calculate the moles of Cl-.
Calculate the initial moles of Cl-.
n ο€½ 0.015mol CaCl2

2 mol Cl ο€­
1mol CaCl2
 0.030mol Cl
ο€­
Calculate the moles of Cl- used up in making the AgCl.
nCl ο€­ ο€½ 2.9 g AgCl

1mol AgCl
143.32 g AgCl

1mol Cl ο€­
1mol AgCl
 ο€½ 0.020mol Cl
ο€­
Calculate the moles of Cl- left in solution.
n ο€½ 0.030mol ο€­ 0.020mol ο€½ 0.010mol
Mο€½
n 0.010mol
ο€½
ο€½ 0.050M Cl ο€­
V
0.2000 L
7
41.
Na2CrO4(aq) + 2AgNO3(aq) οƒ  2NaNO3(aq) + Ag2CrO4(s)
mL AgNO3 οƒ  g Na2CrO4
mL AgNO3 οƒ  mol AgNO3 οƒ  mol Na2CrO4 οƒ  g Na2CrO4
g
1L
M Na2CrO4 ο€½ 161.98 mol
75.0mL AgNO3  1000
mL 
45.

0.1mol AgNO3
1L AgNO3

1mol Na2CrO4
2 mol AgNO3

161.98 g Na2CrO4
1mol Na2CrO4
 ο€½ 0.607 g Na CrO
2
4
g BaSO4 οƒ  g C7H5NO3S (per tablet)
g BaSO4 οƒ  mol BaSO4 οƒ  mol S (in BaSO4) οƒ  mol S (in C7H5NO3S) οƒ  mol C7H5NO3S οƒ 
g C7H5NO3S
g
M BaSO4 ο€½ 233.40 mol
g
M C7 H 5 NO3 S ο€½ 183.20 mol
0.5032 g BaSO4

1mol BaSO4
233.40 g BaSO4

1mol S
1mol BaSO4

1mol S ( C7 H5 NO3 S )
1mol S ( BaSO4 )

1mol C7 H5 NO3 S
1mol S

183.20 g C7 H5 NO3 S
1mol C7 H5 NO3 S
 ο€½ 0.3950g C H NO S
7
5
3
This is the amount of saccharin in 10 tablets therefore there is 0.3950 g of saccharin in one
tablet.
The mass of 10 tablets is 0.5032 g and the mass of the saccharin in 10 tablets is
0.3950 g
ο€½ .03950 g saccharin per tablet
10
The average mass % saccharin
 0.3950 g οƒΆ

οƒ·100% ο€½ 67.02%
 0.5894 g οƒΈ
47.
M2SO4(aq) + CaCl2(aq) οƒ  2MCl(aq) + CaSO4(s)
g CaSO4 οƒ  mol M2SO4
g CaSO4 οƒ  mol CaSO4 οƒ  mol M2SO4
g
M CaSO4 ο€½ 136.15 mol
1.36 g CaSO4

1mol CaSO4
136.15 g CaSO4

1mol M 2 SO4
1mol CaSO4
 ο€½ 0.00999mol M SO
2
4
m
1.42 g
g
ο€½
ο€½ 142 mol
n 0.00999mol
ο€½ 2M M  M S  4M O
M M 2 SO4 ο€½
M M 2 SO4

g
g
g
142 mol
ο€½ 2M M  32.07 mol
 4 16.00 mol

g
M M ο€½ 23 mol
Since the molar mass is 23 the metal is sodium (Na)
51.
V NaOH οƒ  mol NaOH οƒ  mol acid οƒ  V acid
1L
50.00mL NaOH  1000
mL  ο€½ 0.0500 L NaOH
mol NaOH
0.0500L NaOH  0.100
 ο€½ 0.00500mol NaOH
1L NaOH
a)
NaOH(aq) + HCl(aq) οƒ  NaCl(aq) + H2O(l)
b)
2NaOH(aq) + H2SO4(aq) οƒ  Na2SO4(aq) + 2H2O(l)
1mol HCl
1L HCl
0.00500mol NaOH  1mol
NaOH  0.100 mol HCl  ο€½ 0.0500 L HCl
0.00500mol NaOH

1mol H 2 SO4
2 mol NaOH

1L H 2 SO4
0.100 mol H 2 SO4
 ο€½ 0.0250L H SO
2
4
8
c)
3NaOH(aq) + H3PO4(aq) οƒ  Na3PO4(aq) + 3H2O(l)

0.00500mol NaOH
d)
 ο€½ 0.00833L H PO
3
4

1mol HNO3
1mol NaOH

1L HNO3
0.150 mol HNO3
 ο€½ 0.0333L HNO
3

1mol HC2 H3O2
1mol NaOH

1L HC2 H3O2
0.200 mol HC2 H3O2
 ο€½ 0.0250L HC H O
2
3
2
2NaOH(aq) + H2SO4(aq) οƒ  Na2SO4(aq) + 2H2O(l)
0.00500L NaOH
54.
1L H3 PO4
0.200 mol H3 PO4
NaOH(aq) + HC2H3O2(aq) οƒ  NaC2H3O2(aq) + H2O(l)
0.00500L NaOH
f)

NaOH(aq) + HNO3(aq) οƒ  NaNO3(aq) + H2O(l)
0.00500L NaOH
e)
1mol H3 PO4
3mol NaOH

1mol H 2 SO4
2 mol NaOH

1L H 2 SO4
0.300 mol H 2 SO4
 ο€½ 0.00833L H SO
2
4
NaOH(aq) + KHC8H4O4(aq) οƒ  NaKC8H4O4(aq) + H2O(l)
g KHP οƒ  mol KHP οƒ  mol NaOH
0.1082 g KHP

1mol KHP
204.22 g KHP

1mol NaOH
1mol KHP
 ο€½ 5.298 ο‚΄10ο€­4 mol NaOH
Calculate the molarity of the NaOH solution
1L
V ο€½ 34.67mL  1000
mL  ο€½ 0.03467 L
Mο€½
56.
n 5.298 ο‚΄10ο€­4 mol
ο€½
ο€½ 0.01528M NaOH
V
0.03467 L
3Ba(OH)2(aq) + 2H3PO4(aq) οƒ  Ba3(PO4)2(aq) + 6H2O(l)
V H3PO4 οƒ  mol H3PO4 οƒ  mol Ba(OH)2 οƒ  V Ba(OH)2
1L
14.20mL H3 PO4  1000
mL  ο€½ 0.01420 L H 3 PO4
0.01420L H3 PO4
57.

0.141mol H3 PO4
1L H3 PO4

3mol Ba ( OH )2
2 mol H3 PO4

1L Ba ( OH )2
0.0521mol Ba (OH )2
HC2H3O2(aq) + NaOH(aq) οƒ  NaC2H3O2(aq) + H2O(l)
V NaOH οƒ  mol NaOH οƒ  mol HC2H3O2
0.5062 mol NaOH
1L
16.58mL NaOH  1000

mL 
1L NaOH

1mol HC2 H3O2
1mol NaOH
 ο€½ 0.0576L Ba(OH )
2
 ο€½ 0.008393mol HC H O
2
3
2
Calculate the molarity of the acetic acid
1L
V ο€½ 10.0mL  1000
mL  ο€½ 0.0100 L
Mο€½
n 0.008393mol
ο€½
ο€½ 0.8393M HC2 H 3O2
V
0.0100 L
Calculate the mass of the acetic acid
g
M HC2 H3O2 ο€½ 60.06 mol
0.008393mol HC2 H 3O2

60.06 g HC2 H 3O2
1mol HC2 H3O2
 ο€½ 0.5041g
Calculate the mass of the vinegar in 10.0 mL
10.0mL
 
1cm3
1mL
1.006 g
1cm3
 ο€½ 10.06g
Calculate the mass %
 0.5041 οƒΆ

οƒ·100% ο€½ 5.011%
 10.06g οƒΈ
9
61.
This is a limiting reagent problem. Find out if OH- or H+ is present in excess.
2HCl(aq) + Ba(OH)2(aq)οƒ  BaCl2(aq) + 2H2O(l)
Determine the initial moles of H+
0.250 mol HCl
1L
75.0mL HCl  1000

mL 
1L HCl
Determine the initial moles of OH1L
225.0mL Ba(OH )2  1000
mL 


1mol H 
1mol HCl
 ο€½ 0.0188mol H
0.0550 mol Ba ( OH )2
1L Ba ( OH )2

2 mol OH ο€­
1mol Ba ( OH )2

 ο€½ 0.0248mol OH
ο€­
Calculate the number of moles of OH- needed to fully react with 0.0188 mol H+
0.0188mol H 

1mol HCl
1mol H 

1mol Ba ( OH )2
2 mol HCl

2 mol OH ο€­
1mol Ba ( OH )2
 ο€½ 0.0188mol OH
ο€­
Since we have 0.0248 moles of OH-, H+ is the limiting reagent and will be completely consumed.
There will be 0.0060 mol (0.0248 mol - 0.0188 mol) of OH- left over.
Calculate the concentration of OH- left in solution.
1L
V ο€½ 75.0mL  225.0mL ο€½ 300.0mL  1000
mL  ο€½ 0.3000 L
Mο€½
n 0.0060mol
ο€½
ο€½ 0.020M OH ο€­
V
0.3000 L
65.
a)
c)
d)
e)
g)
i)
K +1, Mn +7, and O -2
b) Ni +4, and O -2
Fe +2
NH4 +1 (N -3 and H +1), and HPO4 -2 (H +1, P +5, and O -2)
P +3, and O -2
f) Fe +8/3, and O-2
Xe +6, O -2, and F -1
h) S +4, and F -1
C +2, and O -2
j) C 0, H +1, and O -2
67.
a)
c)
e)
g)
i)
k)
l)
Sr 2+, Cr +6, and O -2
b) Cu +2, and Cl -1
O0
d) H +1 and O -1 (peroxide)
Mg +2, C +4, and O -2
f) Ag 0
Pb 2+, and SO3 -2 (S +4 and O -2)
h) Pb 4+, and O 2Na +1, C +3, and O -2
j) C +4, and O -2
NH4 +1 (N -3 and H +1), Ce 4+, and SO4 2- (S +6 and O -2)
Cr +3, and O -2
68.
Since they ask for substance oxidized they want entire compound not just element oxidized
a)
Redox reaction
Element
Beginning Oxidation #
Ending Oxidation #
O
0
-2
C
-4
+4
O is reduced, O2 is species reduced
C is oxidized, CH4 is species oxidized
O2 is the oxidizing agent
CH4 is the reducing agent
10
b)
c)
d)
e)
f)
g)
h)
i)
Redox reaction
Element
Beginning Oxidation #
Zn
0
H
+1
Zn is oxidized
H is reduced, HCl is species reduced
Zn is the reducing agent
HCl is the oxidizing agent
Not a redox reaction
Redox Reaction
Element
Beginning Oxidation #
O
0
N
+2
O is reduced, O3 is species reduced
N is oxidized, NO is species oxidized
O3 is the oxidizing agent
NO is the reducing agent
Redox Reaction
Element
Beginning Oxidation #
O
-1
O
-1
O is reduced, H2O2 is species reduced
O is oxidized, H2O2 is species oxidized
H2O2 is the oxidizing agent
H2O2 is the reducing agent
Redox Reaction
Element
Beginning Oxidation #
Cu
+1
Cu
+1
Cu is reduced, CuCl is species reduced
Cu is oxidized, CuCl is species oxidized
CuCl is the oxidizing agent
CuCl is the reducing agent
Not a Redox Reaction
Not a Redox Reaction
Redox Reaction
Element
Beginning Oxidation #
Si
+4
Mg
0
Si is reduced, SiCl4 is species reduced
Mg is oxidized
SiCl4 is the oxidizing agent
Mg is the reducing agent
Ending Oxidation #
+2
0
Ending Oxidation #
-2
+4
Ending Oxidation #
0
-2
Ending Oxidation #
0
+2
Ending Oxidation #
0
+2
11
71.
a)
b)
c)
d)
e)
Balance Oxidation ½ Reaction
Cu οƒ  Cu2+
Cu οƒ  Cu2+ + 2eBalance Reduction ½ Reaction
NO3- οƒ  NO
NO3- οƒ  NO + 2H2O
NO3- + 4H+ οƒ  NO + 2H2O
NO3- + 4H+ + 3e-οƒ  NO + 2H2O
Total Balanced Equation
3(Cu οƒ  Cu2+ + 2e-)
2(NO3- + 4H+ +3e-οƒ  NO + 2H2O)
3Cu(s) + 2NO3-(aq) + 8H+(aq) οƒ  3Cu2+(aq) + 2NO(g) + 4H2O(l)
Balance Recution ½ Reaction
Cr2O72- οƒ  Cr3+
Cr2O72- οƒ  2Cr3+
Cr2O72- οƒ  2Cr3+ + 7H2O
Cr2O72- + 14H+ οƒ  2Cr3+ + 7H2O
Cr2O72- + 14H+ + 6e- οƒ  2Cr3+ + 7H2O
Balance Oxidation ½ Reaction
Cl- οƒ  Cl2
2Cl- οƒ  Cl2
2Cl- οƒ  Cl2 + 2eTotal Balanced Equation
Cr2O72- + 14H+ + 6e- οƒ  2Cr3+ + 7H2O
3(2Cl- οƒ  Cl2 + 2e-)
Cr2O72-(aq) + 14H+(aq) + 6Cl-(aq) οƒ  2Cr3+(aq) + 7H2O(l) + 3Cl2(g)
Balance Reduction ½ Reaction
PbO2 + H2SO4 οƒ  PbSO4
PbO2 + H2SO4 οƒ  PbSO4 + 2H2O
PbO2 + H2SO4 + 2H+ οƒ  PbSO4 + 2H2O
PbO2 + H2SO4 + 2H+ + 2e- οƒ  PbSO4 + 2H2O
Balance Oxidation ½ Reaction
Pb + H2SO4 οƒ  PbSO4
Pb + H2SO4 οƒ  PbSO4 + 2H+
Pb + H2SO4 οƒ  PbSO4 + 2H+ + 2eTotal Balanced Equation
PbO2 + H2SO4 + 2H+ + 2e- οƒ  PbSO4 + 2H2O
Pb + H2SO4 οƒ  PbSO4 + 2H+ + 2ePbO2(s) + 2H2SO4(aq) + Pb(s) οƒ  2PbSO4(s)+ 2H2O(l)
Skip this equation. You will not be able to balence this because there is no sodium on
the products side of the equation.
Balance Reducation ½ Reaction
H3AsO4 οƒ  AsH3
H3AsO4 οƒ  AsH3 + 4H2O
H3AsO4 + 8H+ οƒ  AsH3 + 4H2O
H3AsO4 + 8H+ + 8e-οƒ  AsH3 + 4H2O
12
f)
g)
h)
Balance Oxidation ½ Reaction
Zn οƒ  Zn2+
Zn οƒ  Zn2+ + 2eTotal Balanced Equation
H3AsO4 + 8H+ + 8e-οƒ  AsH3 + 4H2O
4(Zn οƒ  Zn2++ 2e-)
H3AsO4(aq) + 8H+(aq) + 4Zn(s)οƒ  AsH3(g)+ 4H2O(l) + 4Zn2+(aq)
Balance Oxidation ½ Reaction
As2O3 οƒ  H3AsO4
As2O3 οƒ  2H3AsO4
As2O3 + 5H2O οƒ  2H3AsO4
As2O3 + 5H2O οƒ  2H3AsO4 + 4H+
As2O3 + 5H2O οƒ  2H3AsO4 + 4H++ 4eBalance Reducation ½ Reaction
NO3- οƒ  NO
NO3- οƒ  NO + 2H2O
NO3- + 4H+ οƒ  NO + 2H2O
NO3- + 4H+ +3e-οƒ  NO + 2H2O
Total Balanced Equation
3(As2O3 + 5H2O οƒ  2H3AsO4 + 4H++ 4e-)
4(NO3- + 4H+ +3e-οƒ  NO + 2H2O)
3As2O3(s) + 7H2O(l) + 4NO3-(aq) + 4H+(aq) οƒ  6H3AsO4(aq) + 4NO(g)
Balance Oxidation ½ Reaction
Br- οƒ  Br2
2Br- οƒ  Br2
2Br- οƒ  Br2 + 2eBalance Reducation ½ Reaction
MnO4- οƒ  Mn2+
MnO4- οƒ  Mn2+ + 4H2O
MnO4- + 8H+ οƒ  Mn2+ + 4H2O
MnO4- + 8H+ + 5e- οƒ  Mn2+ + 4H2O
Total Balanced Equation
5(2Br- οƒ  Br2 + 2e-)
2(MnO4- + 8H+ + 5e- οƒ  Mn2+ + 4H2O)
10Br-(aq) + 2MnO4-(aq) + 16H+(aq) οƒ  5Br2(l) + 2Mn2+(aq) + 8H2O(l)
Balance Oxidation ½ Reaction
CH3OH οƒ  CH2O
CH3OH οƒ  CH2O + 2H+
CH3OH οƒ  CH2O + 2H+ + 2eBalance Reducation ½ Reaction
Cr2O72- οƒ  Cr3+
Cr2O72- οƒ  2Cr3+
Cr2O72- οƒ  2Cr3+ + 7H2O
Cr2O72- + 14H+ οƒ  2Cr3+ + 7H2O
Cr2O72- + 14H+ + 6e- οƒ  2Cr3+ + 7H2O
13
Total Balance Equation
3(CH3OH οƒ  CH2O + 2H+ + 2e-)
Cr2O72- + 14H+ + 6e- οƒ  2Cr3+ + 7H2O
3CH3OH(aq) + Cr2O72-(aq) + 8H+(aq) οƒ  3CH2O(aq) + 2Cr3+(aq) + 7H2O(l)
72.
a)
b)
c)
Balance Oxidation ½ Reaction
Al οƒ  Al(OH)4Al + 4H2O οƒ  Al(OH)4Al + 4H2O οƒ  Al(OH)4- + 4H+
Al + 4H2O οƒ  Al(OH)4- + 4H+ + 3eBalance Reducation ½ Reaction
MnO4- οƒ  MnO2
MnO4- οƒ  MnO2 + 2H2O
MnO4- + 4H+ οƒ  MnO2 + 2H2O
MnO4- + 4H+ + 3e-οƒ  MnO2 + 2H2O
Total Balanced Equation
Al + 4H2O οƒ  Al(OH)4- + 4H+ + 3eMnO4- + 4H+ + 3e-οƒ  MnO2 + 2H2O
Al(s) + 2H2O(l) + MnO4-(aq) οƒ  Al(OH)4-(aq) + MnO2(s)
Since there are no H+ in the equation the equation is the same for acid or basic
conditions.
Balance Reducation ½ Reaction
½Cl2 οƒ  Cl½Cl2 + e-οƒ  ClBalance Oxidation ½ Reaction
½Cl2 οƒ  ClO½Cl2 + H2Oοƒ  ClO½Cl2 + H2O οƒ  ClO- + 2H+
½Cl2 + H2O οƒ  ClO- + 2H+ + eTotal Balanced Equation
½Cl2 + e-οƒ  Cl½Cl2 + H2O οƒ  ClO- + 2H+ + eCl2(g) + H2O(l) οƒ  Cl-(aq) + ClO-(aq) + 2H+(aq)
Switch to basic
Cl2(g) + H2O(l) + 2OH-(aq) οƒ  Cl-(aq) + ClO-(aq) + 2H+(aq) + 2OH-(aq)
Cl2(g) + 2OH-(aq) οƒ  Cl-(aq) + ClO-(aq) + H2O(l)
Balance Reducation ½ Reaction
NO2- οƒ  NH3
NO2- οƒ  NH3 + 2H2O
NO2- + 7H+ οƒ  NH3 + 2H2O
NO2- + 7H+ + 6e- οƒ  NH3 + 2H2O
Balance Oxidation ½ Reaction
Al οƒ  AlO2Al + 2H2O οƒ  AlO2Al + 2H2O οƒ  AlO2- + 4H+
Al + 2H2O οƒ  AlO2- + 4H+ + 3e-
14
d)
e)
Total Balanced Equation
NO2- + 7H+ + 6e- οƒ  NH3 + 2H2O
2(Al + 2H2O οƒ  AlO2- + 4H+ + 3e-)
NO2-(aq) + 2Al(s) + 2H2O(l) οƒ  NH3(g) + 2AlO2-(aq) + H+(aq)
Switch to basic
NO2-(aq) + 2Al(s) + 2H2O(l) + OH-(aq)οƒ  NH3(g) + 2AlO2-(aq) + H+(aq) + OH-(aq)
NO2-(aq) + 2Al(s) + H2O(l) + OH-(aq)οƒ  NH3(g) + 2AlO2-(aq)
Balance Reduction ½ Reaction
MnO4- + S2- οƒ  MnS
MnO4- + S2- οƒ  MnS + 4H2O
MnO4- + S2- + 8H+ οƒ  MnS + 4H2O
MnO4- + S2- + 8H+ + 5e- οƒ  MnS + 4H2O
Balance Oxidation ½ Reaction
S2- οƒ  S
S2- οƒ  S + 2eTotal Balanced Equation
2(MnO4- + S2- + 8H+ + 5e- οƒ  MnS + 4H2O)
5(S2- οƒ  S + 2e-)
2MnO4-(aq) + 7S2-(aq) + 16H+(aq) οƒ  2MnS(s) + 8H2O(l) + 5S(s)
Switch to Basic
2MnO4-(aq)+7S2-(aq)+16H+(aq)+16OH-(aq)οƒ 2MnS(s)+8H2O(l)+5S(s)+16OH-(aq)
2MnO4-(aq) + 7S2-(aq) + 8H2O(l) οƒ  2MnS(s) + 5S(s) + 16OH-(aq)
Balance Reducation ½ Reaction
CN- οƒ  CNOCN- + H2O οƒ  CNOCN- + H2O οƒ  CNO- + 2H+
CN- + H2O οƒ  CNO- + 2H+ + eBalance Oxidation ½ Reaction
MnO4- οƒ  MnO2
MnO4- οƒ  MnO2 + 2H2O
MnO4- + 4H+ οƒ  MnO2 + 2H2O
MnO4- + 4H+ + 3e-οƒ  MnO2 + 2H2O
Total Balanced Equatioin
3(CN- + H2O οƒ  CNO- + 2H+ + e-)
2(MnO4- + 4H+ + 3e-οƒ  MnO2 + 2H2O)
3CN-(aq) + 2MnO4-(aq) + 2H+(aq) οƒ  3CNO-(aq) + 2MnO2(s) + H2O(l)
Switch to basic conditions
3CN-(aq) + 2MnO4-(aq) + 2H+(aq) + 2OH-(aq)οƒ  3CNO-(aq) + 2MnO2(s) + H2O(l) + 2OH-(aq)
3CN-(aq) + 2MnO4-(aq) + H2O(l)οƒ  3CNO-(aq) + 2MnO2(s) + 2OH-(aq)
75.
1st balance the equation
Balance Reduction ½ Reaction
MnO4- οƒ  Mn2+
MnO4- οƒ  Mn2+ + 4H2O
MnO4- + 8H+ οƒ  Mn2+ + 4H2O
MnO4- + 8H+ + 5e- οƒ  Mn2+ + 4H2O
15
Balance Oxidation ½ Reaction
H2C2O4 οƒ  CO2
H2C2O4 οƒ  2CO2
H2C2O4 οƒ  2CO2 + 2H+
H2C2O4 οƒ  2CO2 + 2H+ + 2eTotal Balanced Equation
2(MnO4- + 8H+ + 5e- οƒ  Mn2+ + 4H2O)
5(H2C2O4 οƒ  2CO2 + 2H+ + 2e-)
2MnO4-(aq) + 6H+(aq) + 5H2C2O4(aq) οƒ  2Mn2+(aq) + 8H2O(l) + 10CO2(g)
Calculate the moles of MnO4g H2C2O4 οƒ  mol H2C2O4 οƒ  mol MnO4g
M H 2C2O4 ο€½ 90.04 mol
0.1058 g H 2C2O4

1mol H 2C2O4
90.04 g H 2C2O4

2 mol MnO4ο€­
5 mol H 2C2O4
 ο€½ 4.700 ο‚΄10
ο€­4
mol MnO4ο€­
Calculate the molarity of the MnO4- solution
n
V
1L
V ο€½ 28.97mL  1000
mL  ο€½ 0.02897 L
Mο€½
Mο€½
76.
a)
n 4.700 ο‚΄10ο€­4 mol
ο€½
ο€½ 0.01622M MnO4ο€­
V
0.02897 L
Balance the equation
Balance Reducation ½ Reaction
MnO4- οƒ  Mn2+ + 4H2O
MnO4- + 8H+ οƒ  Mn2+ + 4H2O
MnO4- + 8H+ + 5e- οƒ  Mn2+ + 4H2O
Balance Oxidation ½ Reaction
Fe2+ οƒ  Fe3+
Fe2+ οƒ  Fe3+ + eTotal Balanced Equation
MnO4- + 8H+ + 5e- οƒ  Mn2+ + 4H2O
5(Fe2+ οƒ  Fe3+ + e-)
MnO4-(aq) + 8H+(aq) + 5Fe2+(aq) οƒ  Mn2+(aq) + 4H2O(l) + 5Fe3+(aq)
Calculate the moles of Fe2+
V KMnO4 οƒ  mol KMnO4 οƒ  mol Fe2+
1L
20.62mL KMnO4  1000
mL 

0.0216 mol KMnO4
1L KMnO4

5 mol Fe2
1mol KMnO4
 ο€½ 0.00222mol Fe
2
Calculate the molarity of the Fe2+ solution
n
V
1L
V ο€½ 50.00mL  1000
mL  ο€½ 0.05000 L
Mο€½
Mο€½
n 0.00222mol
ο€½
ο€½ 0.0445M Fe 2
V
0.05000 L
16
b)
Balance the equation
Balance Reduction ½ Reaction
Cr2O72- οƒ  Cr3+
Cr2O72- οƒ  2Cr3+
Cr2O72- οƒ  2Cr3+ + 7H2O
Cr2O72- + 14H+ οƒ  2Cr3+ + 7H2O
Cr2O72- + 14H+ + 6e- οƒ  2Cr3+ + 7H2O
Balance Oxidation ½ Reaction
Fe2+ οƒ  Fe3+
Fe2+ οƒ  Fe3+ + eTotal Balanced Equation
Cr2O72- + 14H+ + 6e- οƒ  2Cr3+ + 7H2O
6(Fe2+ οƒ  Fe3+ + e-)
Cr2O72-(aq) + 14H+(aq) + 6Fe2+(aq) οƒ  2Cr3+(aq) + 7H2O(l) + 6Fe3+(aq)
Calculate the V of K2CrO7
mol Fe2+ οƒ mol K2CrO7 οƒ  V K2CrO7
0.00222mol Fe2
84.


1mol K2Cr2O7
6 mol Fe2
1L K2Cr2O7
0.0150 mol K2Cr2O7
Al(NO3)3(aq) + 3KOH(aq) οƒ Al(OH)3(s) + 3KNO3(aq)
This is a limiting reagent problem
Determine the moles of Al(NO3)3
1L
50.0mL Al  NO3 3  1000
mL 

0.200 mol Al  NO3 3
1L Al  NO3 3
 ο€½ 0.0247L K Cr O
2
2
7
 ο€½ 0.0100mol Al  NO 
3 3
Determine the moles of KOH
0.100 mol KOH
1L
200.0mL KOH  1000
 ο€½ 0.0200mol KOH
mL 
1L KOH
Determine how many moles of KOH are need to fully react 0.0100 mol Al(NO3)3
0.0100mol Al  NO3 3

3mol KOH
1mol Al  NO3 3
 ο€½ 0.0300mol KOH
Since we only have 0.0200 mol KOH the KOH is the limiting reagent
Calculate the mass of Al(OH)3 produced
g
M Al (OH )3 ο€½ 78.01 mol
0.0200mol KOH

1mol Al  OH 3
3mol KOH

78.01g Al  OH 3
1mol Al  OH 3
 ο€½ 0.520g Al OH 
3
17
Related documents