Download 3.5 Double Angle Identities - Easy Peasy All-in

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
3.5. Double Angle Identities
www.ck12.org
3.5 Double Angle Identities
1. If sin x =
4
5
and in Quadrant II, then cosine and tangent are negative. Also, by the Pythagorean Theorem, the
p
third side is 3(b = 52 − 42 ). So, cos x = − 53 and tan x = − 34 . Using this, we can find sin 2x, cos 2x, and
tan 2x.
2 tan x
1 − tan2 x
2 · − 43
=
2
1 − − 34
cos 2x = 1 − sin2 x
2
4
= 1−2·
5
= 1−2·
sin 2x = 2 sin x cos x
3
4
= 2· ·−
5
5
24
=−
25
= 1−
=−
tan 2x =
16
25
− 83
8
7
= − ÷−
3
9
1−
8
9
= − ·−
3
7
24
=
7
=
32
25
7
25
16
9
2. This is one of the forms for cos 2x.
cos2 15◦ − sin2 15◦ = cos(15◦ · 2)
= cos 30◦
√
3
=
2
3. Step 1: Use the cosine sum formula
cos 3θ = 4 cos3 θ − 3 cos θ
cos(2θ + θ) = cos 2θ cos θ − sin 2θ sin θ
Step 2: Use double angle formulas for cos 2θ and sin 2θ
= (2 cos2 θ − 1) cos θ − (2 sin θ cos θ) sin θ
Step 3: Distribute and simplify.
= 2 cos3 θ − cos θ − 2 sin2 θ cos θ
= − cos θ(−2 cos2 θ + 2 sin2 θ + 1)
= − cos θ[−2 cos2 θ + 2(1 − cos2 θ) + 1]
→ Substitute 1 − cos2 θ for sin2 θ
= − cos θ[−2 cos2 θ + 2 − 2 cos2 θ + 1]
= − cos θ(−4 cos2 θ + 3)
= 4 cos3 θ − 3 cos θ
4. Step 1: Expand sin 2t using the double angle formula.
sin 2t − tant = tant cos 2t
2 sint cost − tant = tant cos 2t
50
www.ck12.org
Chapter 3. Trigonometric Identities and Equations, Solution Key
Step 2: change tant and find a common denominator.
sint
cost
2 sint cos2 t − sint
cost
sint(2 cos2 t − 1)
cost
sint
· (2 cos2 t − 1)
cost
tant cos 2t
2 sint cost −
5.
9
If sin x = − 41
40
and in Quadrant III, then cos x = − 41
and tan x =
9
40
q
(Pythagorean Theorem, b = 412 − (−9)2 ).
So,
cos 2x = 2 cos2 x − 1
40 2
=2 −
−1
41
sin 2x = 2 sin x cos x
= 2·−
=
9
40
·−
41
41
720
1681
tan 2x =
sin 2x
cos 2x
=
3200 1681
−
1681 1681
=
720
1681
1519
1681
=
1519
1681
=
720
1519
6. Step 1: Expand sin 2x
sin 2x + sin x = 0
2 sin x cos x + sin x = 0
sin x(2 cos x + 1) = 0
Step 2: Separate and solve each for x.
2 cos x + 1 = 0
1
2
2π 4π
x= ,
3 3
cos x = −
sin x = 0
x = 0, π
or
7. Expand cos 2x and simplify
cos2 x − cos 2x = 0
cos2 x − (2 cos2 x − 1) = 0
− cos2 x + 1 = 0
cos2 x = 1
cos x = ±1
cos x = 1 when x = 0, and cos x = −1 when x = π. Therefore, the solutions are x = 0, π.
8. a. 3.429 b. 0.960 c. 0.280
51
3.5. Double Angle Identities
www.ck12.org
9. a.
2
sin 2x
2
2 csc x 2x =
2 sin x cos x
1
2 csc x 2x =
sin x cos
x
sin x
1
2 csc x 2x =
sin x
sin x cos x
sin x
2 csc x 2x = 2
sin x cos x
1
sin x
2 csc x 2x = 2 ·
sin x cos x
2 csc x 2x = csc2 x tan x
2 csc x 2x =
b.
cos4 θ − sin4 θ = (cos2 θ + sin2 θ)(cos2 θ − sin2 θ)
cos4 − sin4 θ = 1(cos2 θ − sin2 θ)
cos 2θ = cos2 θ − sin2 θ
∴ cos4 θ − sin4 θ = cos 2θ
c.
sin 2x
1 + cos 2x
sin 2x
1 + cos 2x
sin 2x
1 + cos 2x
sin 2x
1 + cos 2x
sin 2x
1 + cos 2x
sin 2x
1 + cos 2x
=
=
=
=
=
2 sin x cos x
1 + (1 − 2 sin2 x)
2 sin x cos x
2 − 2 sin2 x
2 sin x cos x
2(1 − sin2 x)
2 sin x cos x
2 cos2 x
sin x
cos x
= tan x
10. cos 2x − 1 = sin2 x
(1 − 2 sin2 x) − 1 = sin2 x
−2 sin2 x = sin2 x
0 = 3 sin2 x
0 = sin2 x
0 = sin x
x = 0, π
52
www.ck12.org
Chapter 3. Trigonometric Identities and Equations, Solution Key
11.
cos 2x = cos x
2
2 cos x − 1 = cos x
2
2 cos x − cos x − 1 = 0
(2 cos x + 1)(cos x − 1) = 0
&
&
2 cos x + 1 = 0 or cos x − 1 = 0
2 cos x = −1
1
cos x = −
2
cos x = 1 when x = 0 and cos x = − 12 when x =
cos x = 1
2π
3 .
12.
2 csc 2x tan x = sec2 x
2
sin x
1
·
=
sin 2x cos x cos2 x
2
sin x
1
·
=
2 sin x cos x cos x cos2 x
1
1
=
2
cos x cos2 x
13. sin 2x − cos 2x = 1
2 sin x cos x − (1 − 2 sin2 x) = 1
2 sin x cos x − 1 + 2 sin2 x = 1
2 sin x cos x + 2 sin2 x = 2
sin x cos x + sin2 x = 1
sin x cos x = 1 − sin2 x
sin x cos x = cos2 x
p
± 1 − cos2 x cos x = cos2 x
1 − cos2 x cos2 x = cos4 x
cos2 x − cos4 x = cos4 x
cos2 x − 2 cos4 x = 0
cos2 x(1 − 2 cos2 x) = 0
.
&
1 − 2 cos2 x = 0
cos2 x = 0
cos x = 0
or
π 3π
x= ,
2 2
− 2 cos2 x = −1
1
cos2 x =
2 √
2
cos x = ±
2
π 5π
x= ,
4 4
Note: If we go back to the equation sin x cos x = cos2 x, we can see that sin x cos x must be positive or zero,
since cos2 x is always positive or zero. For this reason, sin x and cos x must have the same sign (or one of them
53
3.5. Double Angle Identities
www.ck12.org
must be zero), which means that x cannot be in the second or fourth quadrants. This is why
valid solutions.
14. Use the double angle identity for cos 2x.
sin2 x − 2 = cos 2x
sin2 x − 2 = cos 2x
sin2 x − 2 = 1 − 2 sin2 x
3 sin2 x = 3
sin2 x = 1
sin x = ±1
π 3π
x= ,
2 2
54
3π
4
and
7π
4
are not
Related documents