Download Multiple and Sub Multiple Angles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
9. MULTIPLE AND SUBMULTIPLE ANGLES
Synopsis :
1. i) sin 2A = 2 sin A cos A
=
2 tan A
1 + tan2 A
ii) cos 2A
= cos2 A – sin2 A
= 1 – 2 sin 2A
= 2 cos 2A – 1
=
iii)tan 2A =
2.
1 + tan2 A
2 tan A
1 − tan 2 A
i) sin 3A = 3 sin A – 4 sin3 A
ii) cos 3A = 4 cos3 A – 3 cos A
iii)tan 3A =
3.
1 − tan2 A
3 tan A − tan3 A
1 − 3 tan2 A
The values of Trigonometric functions of some standard angles :
θ
sin
18°
5 −1
36°
5 +1
10 + 2 5
5.
i) sin A . sin (60° – A) sin (60° + A) =
4
4
10 − 2 5
4
4
4.
5 +1
10 − 2 5
4
cos
54°
4
1
sin 3A
4
ii) sin A .sin (120° – A) sin (120° + A) =
1
sin 3A
4
i) cos A . cos (60° – A) cos (60° + A) =
1
cos 3A
4
1
4
ii) cos A . cos (120° – A) cos (120°+ A) = cos 3A
6.
i) tan A .tan (60° – A) tan (60° + A) = tan 3A
ii) tan A .tan (120° – A) tan (120° + A) = tan 3A
7.
i) cot A cot (60° – A) cot (60° + A) = cot 3A
ii) cot A cot (120° – A) cot (120° + A) = cot 3A
1
72°
10 + 2 5
4
5 −1
4
Multiple and Submultiple Angles
8.
i) sin2 θ + sin2 (60° + θ) + sin2 (60° – θ) = 3/2
ii) cos2 θ + cos2 (60° + θ) + cos2 (60° – θ) = 3/2
iii)sin2 θ + sin2 (120° + θ) + sin2 (120° – θ) = 3/2
iv) cos2 θ + cos2 (120° + θ) + cos2 (120° – θ) = 3/2
9.
i) If tan A + tan B + tan C = tan A tan B tan C,
then A + B + C = nπ, n ∈ Z.
ii) If tan A tan B + tan B tan C + tan C tan A = 1,
then A + B + C = (2n + 1) π/2, n ∈ Z.
10. cosx cos2x cos4x … cos (2nx) =
sin(2n +1 x )
2n +1 sin x
.
2
Related documents