Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Tutorial: Mechanic -electrician Topic: Electronics II. class Transistors: Transistor CE Amplifier Prepared by: Ing. Jaroslav Bernkopf Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/04.0002 je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Transistor CE Amplifier Definition A transistor common emitter amplifier is a circuit where the input signal is applied between the base and the emitter while the output is taken from between the collector and the emitter. The emitter is grounded and is common to both the input and output. Hence the name: Common emitter amplifier. +Vcc Rc Vout C Vin Transistors B E 2 Transistor CE Amplifier Description When analyzing and designing the circuits we will use the following formulas: IC = ß ∗ IB IE = IC + IB IB → 0 ⇒ IC ≅ IE VBE = 0.7 V ⇒ VB = VE + 0.7V +Vcc Where IC = current flowing into the collector IB = current flowing into the base IE = current flowing out of the emitter VBE = voltage across the base–emitter diode Vin VB = base voltage with respect to ground VE = emitter voltage with respect to ground ß (beta) = current gain of the transistor. It is the same as h21e or hFE. ≅ means „approximately equal“. Transistors Rc Vout C B E 3 Transistor CE Amplifier Description When we apply a positive voltage to the base, a current IB flows into the base. A ß (beta) times higher current IC flows through the RC into the collector. A small change of the base current IB makes a ß times bigger change of the collector current IC: 𝐼𝐶 = ß ∗ IB +Vcc Rc Vout C Vin Transistors B E 4 Transistor CE Amplifier Description The collector current IC creates a voltage drop VRC across the collector resistor RC. The higher the base voltage, the bigger the voltage drop VRC, and the lower the collector voltage Vout. An increase in base input voltage Vin causes a decrease in collector output voltage Vout. This is why we call this circuit an "Inverting Amplifier“. A small change of the base voltage makes a big change of the collector voltage. The input signal applied on the base appears, amplified, on the collector. +Vcc VRC Rc C Vin Transistors B VCC Vout E Vout 5 Transistor CE Amplifier Task All bias components have been omitted to simplify the above explanations. In the next task, we will design a real amplifier stage including the setting and stabilization of the operating point. +Vcc = 12 V The operating point of a transistor, also known as bias point, quiescent point, or Qpoint, is the steady-state operating condition of a transistor with no input signal applied. (Wikipedia) R1 Rc Vout Vin R2 Transistors RE 6 Transistor CE Amplifier Task Given the following conditions, calculate the values of all resistors for the circuit below. IC = 1 mA VCE = 5 V VE = 2 V ß ≥ 100 Current IR1R2 through the voltage divider R1, R2 about 10 times the max IB +Vcc = 12 V R1 IR1R2 Vout IC=1mA Vin VCE=5V R2 Transistors Rc RE VE=2V 7 Transistor CE Amplifier Solution IE = IC ⇒ IE = 1mA VE 2V RE = = = 2k IE 1mA +Vcc = 12 V R1 IR1R2 Rc Vout IC=1mA Vin VCE=5V IE=1mA R2 Transistors 2k RE VE=2V 8 Transistor CE Amplifier Solution IC 1mA IB = = = 0.01mA ß 100 IR1R2 = 10* IB = 10*0.01mA = 0.1mA VB = VR2 = VE + VBE = 2V + 0.7V = 2.7V +Vcc = 12 V VR2 2.7V R2 = = = 27k IR1R2 0.1mA R1 IR1R2 Rc Vout IC=1mA Vin VCE=5V IE=1mA VB = VR2 = 2.7 V Transistors 27k R2 2k RE VE=2V 9 Transistor CE Amplifier Solution VR1 = VCC – VR2 = 12V – 2.7V = 9.3V VR1 9.3V R1 = = = 93k IR1R2 0.1mA +Vcc = 12 V VR1 = 9.3 V 93k R1 IR1R2 Rc Vout IC=1mA Vin VCE=5V IE=1mA VB = VR2 = 2.7 V Transistors 27k R2 2k RE VE=2V 10 Transistor CE Amplifier Solution VRC = VCC − VCE − VE = 12V − 5V − 2V = 5V VRC 5V RC = = = 5k IC 1mA +Vcc = 12 V 93k R1 IR1R2 5k Rc VRC=5V Vout IC=1mA Vin VCE=5V IE=1mA VB = VR2 = 2.7 V Transistors 27k R2 2k RE VE=2V VCC=12V VR1 = 9.3 V 11 Transistor CE Amplifier Solution When solving the task we have only needed three simple rules: 1) Ohm‘s law 2) Kirchhoff‘s voltage law 3) Kirchhoff‘s current law +Vcc = 12 V 93k R1 IR1R2 5k Rc VRC=5V Vout IC=1mA Vin VCE=5V IE=1mA VB = VR2 = 2.7 V Transistors 27k R2 2k RE VE=2V VCC=12V VR1 = 9.3 V 12 Transistor CE Amplifier Solution 1) Ohm‘s law: VRC 5V RC = = = 5k IC 1mA +Vcc = 12 V 93k R1 IR1R2 5k Rc VRC=5V Vout IC=1mA Vin VCE=5V IE=1mA VB = VR2 = 2.7 V Transistors 27k R2 2k RE VE=2V VCC=12V VR1 = 9.3 V 13 Transistor CE Amplifier Solution 2) Kirchhoff‘s voltage law: VRC = VCC − VCE − VE = 12V − 5V − 2V = 5V +Vcc = 12 V 93k R1 IR1R2 5k Rc VRC=5V Vout IC=1mA Vin VCE=5V IE=1mA VB = VR2 = 2.7 V Transistors 27k R2 2k RE VE=2V VCC=12V VR1 = 9.3 V 14 Transistor CE Amplifier Solution 3) Kirchhoff‘s current law: IE = IC + IB IB → 0 ⇒ IC ≅ IE IE = IC ⇒ IE = 1mA +Vcc = 12 V 93k R1 IR1R2 5k Rc VRC=5V Vout IC=1mA Vin VCE=5V IE=1mA VB = VR2 = 2.7 V Transistors 27k R2 2k RE VE=2V VCC=12V VR1 = 9.3 V 15 Transistor CE Amplifier References http://en.wikipedia.org/wiki/Common_emitter http://www.thefreedictionary.com http://www.animations.physics.unsw.edu.au/jw/calculus.htm http://openlearn.open.ac.uk/ http://www.dnatechindia.com/Tutorial/Transistors/Bipolar-Transistor.html http://talkingelectronics.com/pay/TEI-Index-Full.html Transistors 16