Download AVOP-ELEKTRO-BER-009

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Tutorial: Mechanic -electrician
Topic:
Electronics
II. class
Transistors:
Transistor CE Amplifier
Prepared by: Ing. Jaroslav Bernkopf
Projekt Anglicky v odborných předmětech, CZ.1.07/1.3.09/04.0002
je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky.
Transistor CE Amplifier
Definition
A transistor common emitter amplifier is a circuit where the input signal is
applied between the base and the emitter while the output is taken from
between the collector and the emitter.
The emitter is grounded and is common to both the input and output.
Hence the name: Common emitter amplifier.
+Vcc
Rc
Vout
C
Vin
Transistors
B
E
2
Transistor CE Amplifier
Description
When analyzing and designing the circuits we will use the following formulas:
IC = ß ∗ IB
IE = IC + IB
IB → 0 ⇒ IC ≅ IE
VBE = 0.7 V ⇒ VB = VE + 0.7V
+Vcc
Where
IC = current flowing into the collector
IB = current flowing into the base
IE = current flowing out of the emitter
VBE = voltage across the base–emitter diode
Vin
VB = base voltage with respect to ground
VE = emitter voltage with respect to ground
ß (beta) = current gain of the transistor. It is the
same as h21e or hFE.
≅ means „approximately equal“.
Transistors
Rc
Vout
C
B
E
3
Transistor CE Amplifier
Description
When we apply a positive voltage to the base, a current IB flows into the base.
A ß (beta) times higher current IC flows through the RC into the collector.
A small change of the base current IB makes a ß times bigger change of the
collector current IC:
𝐼𝐶 = ß ∗ IB
+Vcc
Rc
Vout
C
Vin
Transistors
B
E
4
Transistor CE Amplifier
Description
The collector current IC creates a voltage drop VRC across the collector resistor RC.
The higher the base voltage, the bigger the voltage drop VRC, and the lower the
collector voltage Vout.
An increase in base input voltage Vin causes a decrease in collector output voltage
Vout.
This is why we call this circuit an "Inverting Amplifier“.
A small change of the base voltage makes a big change of the collector voltage.
The input signal applied on the base appears, amplified, on the collector.
+Vcc
VRC
Rc
C
Vin
Transistors
B
VCC
Vout
E
Vout
5
Transistor CE Amplifier
Task
All bias components have been omitted to simplify the above explanations.
In the next task, we will design a real amplifier stage including the setting and
stabilization of the operating point.
+Vcc = 12 V
The operating point of a
transistor, also known as bias
point, quiescent point, or Qpoint, is the steady-state
operating condition of a
transistor with no input signal
applied.
(Wikipedia)
R1
Rc
Vout
Vin
R2
Transistors
RE
6
Transistor CE Amplifier
Task
Given the following conditions, calculate the values of all resistors for the circuit
below.
IC = 1 mA
VCE = 5 V
VE = 2 V
ß ≥ 100
Current IR1R2 through the
voltage divider R1, R2 about
10 times the max IB
+Vcc = 12 V
R1
IR1R2
Vout
IC=1mA
Vin
VCE=5V
R2
Transistors
Rc
RE VE=2V
7
Transistor CE Amplifier
Solution
IE = IC ⇒ IE = 1mA
VE
2V
RE =
=
= 2k
IE 1mA
+Vcc = 12 V
R1
IR1R2
Rc
Vout
IC=1mA
Vin
VCE=5V
IE=1mA
R2
Transistors
2k
RE VE=2V
8
Transistor CE Amplifier
Solution
IC 1mA
IB = =
= 0.01mA
ß
100
IR1R2 = 10* IB = 10*0.01mA = 0.1mA
VB = VR2 = VE + VBE = 2V + 0.7V = 2.7V
+Vcc = 12 V
VR2
2.7V
R2 =
=
= 27k
IR1R2 0.1mA
R1
IR1R2
Rc
Vout
IC=1mA
Vin
VCE=5V
IE=1mA
VB = VR2 = 2.7 V
Transistors
27k R2
2k
RE VE=2V
9
Transistor CE Amplifier
Solution
VR1 = VCC – VR2 = 12V – 2.7V = 9.3V
VR1
9.3V
R1 =
=
= 93k
IR1R2 0.1mA
+Vcc = 12 V
VR1 = 9.3 V
93k R1
IR1R2
Rc
Vout
IC=1mA
Vin
VCE=5V
IE=1mA
VB = VR2 = 2.7 V
Transistors
27k R2
2k
RE VE=2V
10
Transistor CE Amplifier
Solution
VRC = VCC − VCE − VE = 12V − 5V − 2V = 5V
VRC
5V
RC =
=
= 5k
IC
1mA
+Vcc = 12 V
93k R1
IR1R2
5k Rc VRC=5V
Vout
IC=1mA
Vin
VCE=5V
IE=1mA
VB = VR2 = 2.7 V
Transistors
27k R2
2k
RE VE=2V
VCC=12V
VR1 = 9.3 V
11
Transistor CE Amplifier
Solution
When solving the task we have only needed three simple rules:
1) Ohm‘s law
2) Kirchhoff‘s voltage law
3) Kirchhoff‘s current law
+Vcc = 12 V
93k R1
IR1R2
5k Rc VRC=5V
Vout
IC=1mA
Vin
VCE=5V
IE=1mA
VB = VR2 = 2.7 V
Transistors
27k R2
2k
RE VE=2V
VCC=12V
VR1 = 9.3 V
12
Transistor CE Amplifier
Solution
1) Ohm‘s law:
VRC
5V
RC =
=
= 5k
IC
1mA
+Vcc = 12 V
93k R1
IR1R2
5k Rc VRC=5V
Vout
IC=1mA
Vin
VCE=5V
IE=1mA
VB = VR2 = 2.7 V
Transistors
27k R2
2k
RE VE=2V
VCC=12V
VR1 = 9.3 V
13
Transistor CE Amplifier
Solution
2) Kirchhoff‘s voltage law:
VRC = VCC − VCE − VE = 12V − 5V − 2V = 5V
+Vcc = 12 V
93k R1
IR1R2
5k Rc VRC=5V
Vout
IC=1mA
Vin
VCE=5V
IE=1mA
VB = VR2 = 2.7 V
Transistors
27k R2
2k
RE VE=2V
VCC=12V
VR1 = 9.3 V
14
Transistor CE Amplifier
Solution
3) Kirchhoff‘s current law:
IE = IC + IB
IB → 0 ⇒ IC ≅ IE
IE = IC ⇒ IE = 1mA
+Vcc = 12 V
93k R1
IR1R2
5k Rc VRC=5V
Vout
IC=1mA
Vin
VCE=5V
IE=1mA
VB = VR2 = 2.7 V
Transistors
27k R2
2k
RE VE=2V
VCC=12V
VR1 = 9.3 V
15
Transistor CE Amplifier
References






http://en.wikipedia.org/wiki/Common_emitter
http://www.thefreedictionary.com
http://www.animations.physics.unsw.edu.au/jw/calculus.htm
http://openlearn.open.ac.uk/
http://www.dnatechindia.com/Tutorial/Transistors/Bipolar-Transistor.html
http://talkingelectronics.com/pay/TEI-Index-Full.html
Transistors
16
Related documents