Download ENGR-25_Prob_4-28_Dense_Road_Solution

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Engineering 25
Chp4
Tutorial:
Prob 4.28
Solution
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Engineering/Math/Physics 25: Computational Methods
1
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
The Situation
 Optimize Distribution Center
Location for Customers:
ENGR25 Problem 4.25 * 23Feb06
35
NOTES
• Size of Bubbles denotes relative shipping Volume
30

25

North Distance (Ymiles)
20

15

10

5

0
-5
0
5
10
15
20
25
file = P4-25_Dense-Road_Bubble-Chart_0602.xls
-5
East Distance (Xmiles)
Engineering/Math/Physics 25: Computational Methods
2
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
30
35
WhareHouse Location
Optimization
N
Engineering/Math/Physics 25: Computational Methods
3
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
E
Engineering/Math/Physics 25: Computational Methods
4
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
Engineering/Math/Physics 25: Computational Methods
5
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
Engineering/Math/Physics 25: Computational Methods
6
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
The Final Hand Notes
Engineering/Math/Physics 25: Computational Methods
7
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
GamePlan Illustrated
 Set x-value (m-index)
 Test 31 y-values (n-index)
 Increment x-value (m = m+1)
 Test 31 new y-values
 Repeat
N
E
Engineering/Math/Physics 25: Computational Methods
8
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
The MATLAB Program
% Bruce Mayer, PE * 8Sep11 * Rev 26Feb12
% ENGR25 * Problem 4-28
% file = Prob4_28_Dense_Road_1109.m
% Find Optimum Location for Shipping Distribution Center
%
% INPUT SECTION - Data For Six Shipping Destinations
xloc = [1,7,8,17,22,27]; % X-CoOrd in Miles
yloc = [28,18,16,2,10,8]; % Y-CoOrd in Miles
V = [3,7,4,5,2,6]; % Shipping Volume in Tons/Week
%
% Initialize Low-Cost Location & CoOrds Collection Vectors
%=> Units for Collection Vectors: [$-Cost, X-miles, Y-Miles]
C_Lo = [1e6, 31, 31];
C_L1 = [1e6, 31, 31];
C_L2 = [1e6, 31, 31];
%
% CALCULATION SECTION
% vary X&Y for Dist Cntr; calc cost at each location
for m = 0:30 % vary X-CoOrd in Miles
for n = 0:30 % vary Y-CoOrd in Miles
for k = 1:6 % Calc Dist & Cost for 6 Destinations
d(k) = sqrt((m-xloc(k))^2 + (n-yloc(k))^2);
cost(k) = 0.5*d(k)*V(k);
end
% Sum the 6 costs for location (m,n)
Cmn = sum(cost);
LcnCost(m+1, n+1) = Cmn; % Store all Cost-Tests for later inspection
%* Note: Array indices are NATURAL No'.s; they canNOT Start a Zerot
% Compare to Previous value for Low-Cost
if Cmn < C_Lo(1) % replace ALL THREE previous if new CHAMPION
C_L2 = C_L1;
C_L1 = C_Lo;
C_Lo = [Cmn, m, n];
elseif Cmn < C_L1(1) % Replace TWO RunnersUp if new 1st RunnerUp
C_L2 = C_L1;
C_L1 = [Cmn, m, n];
elseif Cmn < C_L2(1) % Replace ONE RunnerUp if new 2nd RunnerUp
C_L2 = [Cmn, m, n];
end
end
end
%
% REPORT RESULTS
display('The LOWEST-Cost Option in [$-cost, X-miles, Y-miles]')
disp(C_Lo)
display('The 1st "RunnerUp" Low-Cost Option in [$-cost, X-miles, Y-miles]')
disp(C_L1)
display('The 2nd "RunnerUp" Low-Cost Option in [$-cost, X-miles, Y-miles]')
disp(C_L2)
%
% Make SURF plot to show Cost vs Location
E = [0:30];
N = [0:30];
surfc(E, N, LcnCost), xlabel('miles North'), ylabel('miles East'), zlabel('$Cost
per Week'
Bruce Mayer, PE
Engineering/Math/Physics 25: Computational Methods
9
[email protected] • ENGR-25_HW-01_Solution.ppt
The Number Results
The LOWEST-Cost Option in [$-cost,
X-miles, Y-miles]
147.2551
9.0000
16.0000
The 1st "RunnerUp" Low-Cost Option
in [$-cost, X-miles, Y-miles]
147.3513
8.0000
16.0000
The 2nd "RunnerUp" Low-Cost Option
in [$-cost, X-miles, Y-miles]
148.0319
10.0000
16.0000
Engineering/Math/Physics 25: Computational Methods
10
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
The Graph Results
400
$Cost per Week
350
300
250
200
150
100
30
20
10
0
30
25
15
20
10
miles East
miles North
 Note the Fairly Large
Optimum Region
@ 10mi-E & 16mi-N
Engineering/Math/Physics 25: Computational Methods
11
Bruce Mayer, PE
[email protected] • ENGR-25_HW-01_Solution.ppt
5
0
Related documents