Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Engineering 25 Chp4 Tutorial: Prob 4.28 Solution Bruce Mayer, PE Licensed Electrical & Mechanical Engineer [email protected] Engineering/Math/Physics 25: Computational Methods 1 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt The Situation Optimize Distribution Center Location for Customers: ENGR25 Problem 4.25 * 23Feb06 35 NOTES • Size of Bubbles denotes relative shipping Volume 30 25 North Distance (Ymiles) 20 15 10 5 0 -5 0 5 10 15 20 25 file = P4-25_Dense-Road_Bubble-Chart_0602.xls -5 East Distance (Xmiles) Engineering/Math/Physics 25: Computational Methods 2 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt 30 35 WhareHouse Location Optimization N Engineering/Math/Physics 25: Computational Methods 3 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt E Engineering/Math/Physics 25: Computational Methods 4 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt Engineering/Math/Physics 25: Computational Methods 5 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt Engineering/Math/Physics 25: Computational Methods 6 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt The Final Hand Notes Engineering/Math/Physics 25: Computational Methods 7 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt GamePlan Illustrated Set x-value (m-index) Test 31 y-values (n-index) Increment x-value (m = m+1) Test 31 new y-values Repeat N E Engineering/Math/Physics 25: Computational Methods 8 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt The MATLAB Program % Bruce Mayer, PE * 8Sep11 * Rev 26Feb12 % ENGR25 * Problem 4-28 % file = Prob4_28_Dense_Road_1109.m % Find Optimum Location for Shipping Distribution Center % % INPUT SECTION - Data For Six Shipping Destinations xloc = [1,7,8,17,22,27]; % X-CoOrd in Miles yloc = [28,18,16,2,10,8]; % Y-CoOrd in Miles V = [3,7,4,5,2,6]; % Shipping Volume in Tons/Week % % Initialize Low-Cost Location & CoOrds Collection Vectors %=> Units for Collection Vectors: [$-Cost, X-miles, Y-Miles] C_Lo = [1e6, 31, 31]; C_L1 = [1e6, 31, 31]; C_L2 = [1e6, 31, 31]; % % CALCULATION SECTION % vary X&Y for Dist Cntr; calc cost at each location for m = 0:30 % vary X-CoOrd in Miles for n = 0:30 % vary Y-CoOrd in Miles for k = 1:6 % Calc Dist & Cost for 6 Destinations d(k) = sqrt((m-xloc(k))^2 + (n-yloc(k))^2); cost(k) = 0.5*d(k)*V(k); end % Sum the 6 costs for location (m,n) Cmn = sum(cost); LcnCost(m+1, n+1) = Cmn; % Store all Cost-Tests for later inspection %* Note: Array indices are NATURAL No'.s; they canNOT Start a Zerot % Compare to Previous value for Low-Cost if Cmn < C_Lo(1) % replace ALL THREE previous if new CHAMPION C_L2 = C_L1; C_L1 = C_Lo; C_Lo = [Cmn, m, n]; elseif Cmn < C_L1(1) % Replace TWO RunnersUp if new 1st RunnerUp C_L2 = C_L1; C_L1 = [Cmn, m, n]; elseif Cmn < C_L2(1) % Replace ONE RunnerUp if new 2nd RunnerUp C_L2 = [Cmn, m, n]; end end end % % REPORT RESULTS display('The LOWEST-Cost Option in [$-cost, X-miles, Y-miles]') disp(C_Lo) display('The 1st "RunnerUp" Low-Cost Option in [$-cost, X-miles, Y-miles]') disp(C_L1) display('The 2nd "RunnerUp" Low-Cost Option in [$-cost, X-miles, Y-miles]') disp(C_L2) % % Make SURF plot to show Cost vs Location E = [0:30]; N = [0:30]; surfc(E, N, LcnCost), xlabel('miles North'), ylabel('miles East'), zlabel('$Cost per Week' Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 9 [email protected] • ENGR-25_HW-01_Solution.ppt The Number Results The LOWEST-Cost Option in [$-cost, X-miles, Y-miles] 147.2551 9.0000 16.0000 The 1st "RunnerUp" Low-Cost Option in [$-cost, X-miles, Y-miles] 147.3513 8.0000 16.0000 The 2nd "RunnerUp" Low-Cost Option in [$-cost, X-miles, Y-miles] 148.0319 10.0000 16.0000 Engineering/Math/Physics 25: Computational Methods 10 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt The Graph Results 400 $Cost per Week 350 300 250 200 150 100 30 20 10 0 30 25 15 20 10 miles East miles North Note the Fairly Large Optimum Region @ 10mi-E & 16mi-N Engineering/Math/Physics 25: Computational Methods 11 Bruce Mayer, PE [email protected] • ENGR-25_HW-01_Solution.ppt 5 0