Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Kenji Morita CPOD2016@Wroclaw Fluctuations of Charges at the Phase Boundary Kenji Morita (Yukawa Institute for Theoretical Physics, Kyoto University) 1. Fluctuations of Conserved Charges in Thermal Equilibrium 2. Critical Behavior : Baryon number fluctuations Consequence from O(4) and smearing by finite volume and quark mass 3. Electric Charge Fluctuations in π gas and Hadron Resonance Gas Importance of “reference” distribution and role of quantum statistics 30 May, 2016 1 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw “Thermodynamics” in Heavy Ion Collisions~10fm/c, V=π(5fm)2×(10-100fm) Conserved Charges in QCD Baryon B (← Stopping) Electric Charge Q (← Baryon) Strangeness S (=0, pair creation) Globally conserved: Au+Au Collisions@RHIC B=197×2 Q=79×2 S=0 Dynamical system in local equilibrium (Hydrodynamics) T(x), μ(x), uμ(x) Cooper-Frye Exp. acceptance Δy, Δpt, Δφ Small Δy, Low pt Subsystem in Grand-Canonical Ensemble Z(T,V,μB, μQ, μS) 30 May, 2016 2 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Fluctuation Studies in Heavy Ion Collisions~10fm/c, V=π(5fm)2×(10-100fm) Conserved Charges in QCD Baryon B (← Stopping) Electric Charge Q (← Baryon) Strangeness S (=0, pair creation) Counting # of particles on e-by-e basis STAR, net-proton, PRL112 (’14) Globally conserved: Au+Au Collisions@RHIC B=197×2 Q=79×2 S=0 Exp. acceptance Δy, Δpt, Δφ Small Δy, Low pt Fluctuations of B, Q, S in GC Subsystem Z(T,V,μB, μQ, μS) 30 May, 2016 3 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw From Fluctuations to QCD Critical Property Hadronic observables - information Extracted (T,μ) coincides with the at freeze-out : Determination of T and μ of a subsystem of the hot matter from particle yields / fluctuations Borsanyi, QM15 30 May, 2016 Crossover transition region in QCD Up to μB~ 400MeV (Remnant) critical property of QCD from fluctuation of conserved charges 4 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Characterizing Fluctuations 10 Cumulants 0 Uncorrected Data 19.6GeV, 0-5% Gaussian P(N) Skellam 10-2 (=7.61) (=9.16) (=7.23) P(N) 10-4 10-6 -8 10 10 -3 10 -4 10 -5 10 -6 30 May, 2016 -10 Skellam (Data) Gauss 18 19 20 21 22 23 24 -10 10 (=7.36) 0 10 20 N=N p-Npbar 30 Ratios characterize the shape of P(N) 5 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw QCD Phase Transition / NB Fluctuations Chiral Limit Phys. quark mass T Pisarski-Wilczek ‘84 2nd Order, 3d O(4) TCP? Crossover – Feel O(4)? CP? χ2 diverges χ3,4 change the sign mphys mq 30 May, 2016 μ Hatta-Ikeda ’03, Asakawa et al.,’09, Skokov et al., ’11, Stephanov, ‘11 χ6 (μ=0), χ3,4(μ>>0) General property from O(4) scaling function changes the sign (Engels and Karsch ’11, Friman et al., ’11) across crossover 6 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Sign Change of Cumulants Near TCP, Chiral Limit, Finite V (Lattice QCD in Strong Coupling Limit, Ichihara, KM, Ohnishi, ‘15) Divergence replaced by sign changes due to finite volume 30 May, 2016 7 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Sign Change of Cumulants Crossover near O(4) (PQM+FRG) Skokov, Friman, Redlich, PRC’11 Weaker “Critical behavior” No peak in χ2, no negative χ3 Smeared by finite mq and fluctuations via FRG 30 May, 2016 8 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Importance of Reference Distribution Hadron Gas Divergent : in χ limit or CP Finite : cause sign changes in crossover Suppression factor (μq/T)n Obscured when Remnant of the divergence may only appear as deviation from the regular part contribution Net-Baryon : N, Δ, Hyperon, etc… • m >> T,μ – Boltzmann Gas -Skellam Distribution Net-electric charge : π, K, ρ, p, …. • π and Δ++ cause substantial deviation from Skellam Net-strangeness : K, K*, Λ, Σ, Ξ, …. • Heavy enough, but multi-charged (up to 3!) 30 May, 2016 9 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Baryon Gas : Skellam Distribution # of baryons (Poisson) # of antibaryon (Poisson) Statistical mechanics : Boltzmann distribution 2 parameters Independent of momentum integration range Expectation (confirmed by lattice): χ1 and χ2 are well described by HRG Deviation from Skellam in higher order χn can reflect the phase transition 30 May, 2016 10 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw (Negative) Binomial Distribution? NB (κσ2 >1), BD(κσ2<1) can fit the critical χ2 and χ4, but cannot reproduce χ6 4/2, 6/2 1 0.5 0 Higher (n>4) cumulants necessary to identify the critical fluctuations FRG, 4/ FRG, 6/ NBD/BD, 6/2 Skellam -0.5 0.6 0.7 0.8 0.9 T/Tpc 1 1.1 KM, Friman, Redlich, PLB ’15 30 May, 2016 11 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Charge Fluctuations in π gas Pion mπ~T : Bose statistics P. Braun-Munzinger et al., NPA’12 = Multicomponent Boltzmann gas with mass km, charge k, and degeneracy kn-4 Leading order : Skellam all k >1 terms : positive p-integration range can change χn ratio 30 May, 2016 12 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Effect of Low pt Cut Karsch, KM, Redlich, PRC ‘16 Electric Charge Cumulants of a free gas tmin=0 1 Q Q / 1 1 |p χ1 – Density vs Mass: T=160MeV, m mK m mK* 0.8 Heavier particles less affected by pt cut Q=-1MeV 0.6 0.4 π contribution suppressed by pt cut 0.2 0 0 0.2 0.4 ptmin 30 May, 2016 0.6 [GeV/c] 0.8 1 13 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Effect of Low pt Cut Karsch, KM, Redlich, PRC ‘16 Electric Charge Cumulants of a free gas 2.5 Low pt cut : closer χ4/χ2 to 1 Skellam m/T=0.75 1.0 1.25 1.5 Q Q 4 /2 2 For small μQ/T, free gas, ptmax=2GeV/c 1.5 Q = -1MeV, T=160MeV 1 0 0.2 0.4 ptmin 0.6 [GeV/c] 0.8 1 Substantial decrease from ptmin=0 to ptmin = 0.2 (STAR) or 0.3 (PHENIX) GeV 30 May, 2016 14 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw M/σ2 in HRG M = (π, ρ, etc) + (strange mesons) + (baryons) + (hyperons) > 0 (μS > 0) > 0 (μB > 0) > 0 (μB-(1~3)μS > 0) < 0 (μ < 0) Q Negative meson contribution is reduced by pt cut Q=-1MeV 0.6 0.4 0.8 0 ptmin 0.6 [GeV/c] 0.8 Single component 30 May, 2016 1 s1/2 NN=200GeV 1/2 ptcut in only, s NN=200GeV 1/2 sNN=19.6GeV ptcut in only, s 1/2 NN=19.6GeV 0.4 0 0.4 All particles 0.6 0.2 0.2 pt cut π only 1 0.2 0 1.2 0 0.2 0.4 ptmin 0.6 [GeV/c] M in HRG 1 2/2(ptmin=0) tmin=0 Q Q 1 /1 |p 0.8 1.2 1/1(ptmin=0) T=160MeV, m mK m mK* 1 Total M can be non-monotonic in ptmin σ2 simply decreases π only 0.8 0.6 All particles s1/2 NN=200GeV 1/2 ptcut in only, s NN=200GeV 1/2 sNN=19.6GeV ptcut in only, s 1/2 NN=19.6GeV 0.4 0.2 0 0.8 1 0 0.2 0.4 ptmin 0.6 [GeV/c] 0.8 1 σ2 in HRG 15 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw M/σ2 in HRG : STAR vs PHENIX MQ/2Q / MQ/2Q |p tmin=0 1.4 1.3 STAR : set A 0.2 < pt < 2.0, |h| < 0.5 STAR : set B 0.3 < pt < 2.0, |h| < 0.35 STAR : set C PHENIX : set A PHENIX : set B A : pt cut for π only B : Same pt cut for all hadrons C : ptmin = 0.4 GeV for protons (STAR) 10% larger M/σ2 in PHENIX acceptance 1.2 1.1 0.3 rescaled STAR PHENIX 1 10 100 sNN [GeV] Data : PHENIX/STAR ~ 1.35 After rescaling, data become closer 30 May, 2016 (MQ/ 2Q )/(MP/ 2P ) 0.25 STAR PHENIX 0.2 0.15 0.1 0.05 0 5 10 50 s NN 100 5 10 50 100 s NN 16 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw κσ2 in HRG (prediction) STAR : set A STAR : set B STAR : set C PHENIX : set A PHENIX : set B Q 2Q /Q 2Q |p tmin=0 0.94 0.92 0.9 0.88 0.86 6% difference btw. STAR and PHENIX expected 0.84 0.82 0.8 10 100 sNN [GeV] pt cut reduces κσ2 < 10% at low energies, due to more proton contribution 30 May, 2016 pt cut reduces κσ2 by 10-20% at high energies 17 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Concluding Remarks Higher-order fluctuations of net-B, Q around phase boundary Critical behavior : Smeared by finite V, nonzero mq Lattice QCD in Strong Coupling Limit Chiral model calculations with FRG Deviation from the reference net-B : Skellam distribution – momentum independent net-Q : Bose statistics – affected by low pt cut 30 May, 2016 18 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Backup 30 May, 2016 19 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Effects of Interaction Charge fluctuations in QM model (Nf=2) μB=μQ=0 0.8 0.7 0.6 free gas QM+FRG, only QM+FRG, quark only QM+FRG Susceptibility: quark dominant (Caveat: deconfined – quarks have Q=2/3, -1/3) 2 0.5 “π only” : Qu,d=0 “quark only” : Qπ=0 0.4 0.3 0.2 0.1 0 0.05 0.1 0.15 0.2 0.25 T [GeV] 30 May, 2016 20 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Effects of Interaction Charge fluctuations in QM model (Nf=2) μB=μQ=0 0.8 0.7 0.6 free gas QM+FRG, only QM+FRG, quark only QM+FRG 4th cumulant: π dominant (Caveat: deconfined – quarks have Q=2/3, -1/3) Quark contribution suppressed by Fermi statistics 4 0.5 0.4 0.3 “π only” : Qu,d=0 “quark only” : Qπ=0 0.2 0.1 0 0.05 0.1 0.15 0.2 0.25 T [GeV] 30 May, 2016 21 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Effects of Interaction Charge fluctuations in QM model (Nf=2) μB=μQ=0 2 1.5 6th cumulant: Negative χ6 from chiral crossover Obscured by π contribution 6 1 0.5 0 -0.5 free gas QM+FRG, only QM+FRG, quark only(x10) QM+FRG 0.05 0.1 0.15 “π only” : Qu,d=0 “quark only” : Qπ=0 0.2 0.25 T [GeV] 30 May, 2016 22 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Effect of Low pt Cut Electric Charge Cumulants of a free gas T=160MeV, m T=160MeV, 3m T=53MeV, m Q Q 1 /1 |p tmin=0 1 χ1 – Density vs Mass: 0.8 Heavier particles less affected by pt cut 0.6 Q=-1MeV 0.4 0.2 0 0.2 0.4 ptmin 0.6 [GeV/c] 0.8 1 π contribution suppressed by pt cut At ptmin=0, χn scale with m/T Different pt cut effect for same m/T! 30 May, 2016 23 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Pseudorapidity Cut 2.2 1.8 2 1.6 Q = 0, T=160MeV 1.4 Skellam 0 < pT < 0.2 < pT < 2.0 GeV 0.3 < pT < 2.0 GeV 1.8 Q Q 4 /2 2 Q Q 4 /2 2.2 Skellam ||=0.35 0.5 1 3 5 1.6 1.4 1.2 1.2 Static gas, T=160MeV 1 1 0 0.2 0.4 0.6 ptmin [GeV/c] 0.8 1 No significant dependence on η cut 0 0.5 1 1.5 ||=2max 2 Difference coming from lower pt cut Lower cut induces effective mass heavier than m, thus approaching Skellam distribution by increasing ptmin. Cuts in ηmax only affect high momentum particle contribution. 30 May, 2016 24 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw High p Cut Effects on Cumulant Ratios 2.4 Skellam T=160MeV, || < 0.35 T=120MeV w/ Flow, | | < 0.35 2.2 Q Q / 4 2 2 1.8 free gas, p tmin=0.3 GeV/c 1.6 1.4 1.2 1 0.4 0.6 0.8 1 1.2 1.4 ptmax [GeV/c] 1.6 1.8 ptmax < 1GeV : stronger influences from Bose statistics 30 May, 2016 25 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Electric Charge Fluctuations Recent measurements @RHIC STAR(‘14), PHENIX(‘15) Statistics problem (particularly STAR) PHENIX: above Skellam ? 30 May, 2016 26 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Effects of expansion Boost-invariant + Transverse Gaussian + Linear flow 10 10 3 2.4 STAR T=160MeV, yT=0 T=120MeV, f=0.373 Skellam Static, T=160MeV, | | < 0.35 T=160MeV, yT =0, | | < 0.35 T=120MeV, f=0.373, | | < 0.35 2.2 2 R=6fm Q4 /Q2 d2N/(2dypTdpT) [(GeV/c)-2] 10 2 1.8 free gas, p tmax=2GeV/c 1.6 1.4 1.2 - STAR Au+Au 0-5%, |y| < 0.1 1 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 pT [GeV/c] 0 0.2 0.4 0.6 ptmin [GeV/c] 0.8 1 Similar χ4/χ2 in T=120MeV w/ Flow and T=160MeV w/o flow for ptmin ~ 0.2GeV HRG results found in P. Garg et al., ‘13 30 May, 2016 27 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Finite Size and Low pt cut ? Pion gas in a finite (L3) box Periodic boundary 0.25 condition 0.6 ptmin = k 2/L k=0.707,m /T=0.75 1 1.25 1.5 1.75 2 0.5 0.2 0.4 |η| < 0.35 k = 0.707 2 Q 4 Q 0.15 0.1 0.3 [|η| < 5 : k=0.5] 0.2 k=0.707,m /T=0.75 1 1.25 1.5 1.75 2 0.05 0 0 0.1 LQCD 30 May, : 2016 0.2 0.3 1/ (Lm ) 0.1 ptmin = k 2/L 0 0.4 0.5 0 0.1 0.2 0.3 1/ (Lm ) 0.4 0.5 28 Kenji Morita (YITP, Kyoto) CPOD2016@Wroclaw Electric Charge Fluctuations Complementary to net-baryon Leading singularity from chiral transition No “proton≠baryon” problem Larger multiplicity (as π dominates) than net-baryon Less efficiency, however. 30 May, 2016 29