Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name:________________________________________________ Date:________ Period:_______ Congruent Triangles Review: ANSWER KEY Ms. Anderle Congruent Triangles: Review ANSWER KEY 1. HL, ASA, AAS, SAS, SSS 2. Statement 1) SY||UD 2) <S <D; <U <Y 3) SD bisects YU 4) YT TU **5)<STY & <UTD are vertical angles. ** 6) <STY <UTD 7) ∆STY ∆UTD 3. Statement 1) Reasons___________________________________ 1) Given 2) Parallel lines cut by a transversal form congruent alternate interior angles. 3) Given 4) A bisectors divides a segment into two congruent segments. 5) Intersecting lines form vertical angles. 6) Vertical angles are congruent 7) AAS / **ASA (can only use if you used steps 5&6) Reasons___________________________________ 1) Given 2) 2) Given 3) <CBD and <CBA are right angles. 4) 3) Perpendicular lines form right angles. 5) 5) Reflexive Property 6) ∆CBD and ∆CBA are right triangles. 7) ∆CBD ∆CBA 8) <CDB <CAB 4. Statement 1) CD bisects <ACB 2) <ACD <BCD 4) All right angles are congruent. 6) A triangle with one right angles is a right triangle. 7) HL 8) CPCTC Reasons___________________________________ 1) Given 2) A bisector divides an angle into two congruent angles. 3) 3) Given 4) <CDA and <CDB are right angles. 5) 4) Perpendicular lines form right angles. 6) 6) Reflexive Property 5) All right angles are congruent. 7) ∆ADC ∆DBC 8) 7) ASA 8) CPCTC 5. Statement 1) <ECB <ECD Reasons___________________________________ 1) Given 2) <ECB & <BCA are supplementary <ECD & <DCA are supplementary 3) <BCA <DCA 2) Angles that form a linear pair are supplementary. 4) BC CD 4) Given 5) AC AC 5) Reflexive 6) ∆ABC ∆ADC 3) Supplements of congruent angles are congruent. 6) SAS 6. Statement 1) <1 <2 Reasons___________________________________ 1) Given 2) <3 2) Given <4 3) <3 & <CDA are supplementary <4 & <CBA are supplementary 4) <CDA <CBA 3) Angles that form a linear pair are supplementary. 5) AC 5) Reflexive Property AC 6) ∆ACD 7) DC ∆ABC AB 4) Supplements of congruent angles are congruent. 6) AAS 7) CPCTC 7. Statement 1) <E <B Reasons___________________________________ 1) Given 2) DC FA 2) Given 3) FC FC 3) Reflexive 4) DC + FC 5) DF FA + FC AC 4) Addition Postulate 5) Substitution 6) 6) Given 7) 7) Given 8) <EDA & <CAB are right angles 9) <EDA <CAB 8) Perpendicular lines meet to form right angles. 9) All right angles are congruent. 10) ∆EDF 10) AAS 11) CB ∆ACB EF 11) CPCTC 8. Statement 1) CA||BD 2) <CAE <EBD Reasons___________________________________ 1) Given 2) Parallel lines cut by a transversal form congruent 3) <ACE alternate interior angles. 3) Parallel lines cut by a transversal form congruent <EDB 4) E is the midpoint of CD 5) CE DE alternate interior angles. 4) Given 5) A midpoint divides a segment into two congruent segments. 6) ΔCAE 6) AAS ΔBED 7) CA BD 7) CPCTC ***You can also prove <CEA and <BED by using vertical angles. If you use this method, you may be able to prove the triangles congruent using ASA.*** 9. Statement 1) DA EA Reasons___________________________________ 1) Given 2) A is the midpoint of GF 3) 2) Given 3) Given 4) 4) Given 5) <DGA and <EFA are right angles 6) <DGA <EFA 5) Perpendicular lines meet to form right angles. 6) All right angles are congruent. 7) ΔDGA and ΔEFA are right triangles. 7) A right triangle has one right angle. 8) ΔDGA ΔEFA 8) HL 9) DG EF 9) CPCTC 10. Statement 1) ΔPQR is isosceles with base PR 2) PQ RQ Reasons___________________________________ 1) Given 2) An isosceles triangle has two congruent sides. 3) PS SR 3) Given 4) SQ SQ 4) Reflexive 5) ΔPSQ 11. SKIP ΔRSQ 5) SSS 12. Statement 1) <1 <2 Reasons___________________________________ 1) Given 2) <1 & <UEQ are supplementary <2 & <AJC are supplementary 3) <UEQ <AJC 2) Angles that form a linear pair are supplementary 4) JQ EC 4) Given 5) CQ CQ 5) Reflexive 6) JQ – CQ 7) JC EC – CQ QE 8) JA 9) ΔJAC 10) AC 3) Supplements of congruent angles are congruent 6) Subtraction 7) Substitution 8) Given ΔQUE QU 9) SAS 10) CPCTC