Download PHY 711 -- Assignment #24

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PHY 711 Classical Mechanics and
Mathematical Methods
11-11:50 AM MWF Olin 107
Plan for Lecture 32:
Effects of viscosity in fluid motion –
Chap.12 in Fetter & Walecka
1. Navier-Stokes equation
2. Terminal velocity of a sphere
moving with constant applied force
in a viscous medium
3. Stokes’ viscosity relation
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
1
11/16/2016
11/22/2013
PHY 711 Fall 2013
2016 -- Lecture 34
32
2
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
3
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
4
Brief introduction to viscous effects in incompressible fluids
Stokes' analysis of viscous drag on a sphere of radius R
moving at speed u in medium with viscosity  :
FD   6Ru 
u
FD
Plan:
1. Consider the general effects of viscosity on fluid
equations
2. Consider the solution to the linearized equations
for the case of steady-state flow of a sphere of
radius R
3. Infer the drag force needed to maintain the
steady-state flow
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
5
Newton-Euler equation for incompressible fluid,
modified by viscous contribution (Navier-Stokes equation):
v
p  2
  v    v  f applied 
  v
t
 
 Kinematic viscosity
Typical kinematic viscosities at 20o C and 1 atm:
Fluid
1.00 x 10-6
Water
14.9 x 10-6
Air
Ethyl alcohol
Glycerine
11/16/2016
n (m2/s)
1.52 x 10-6
1183 x 10-6
PHY 711 Fall 2016 -- Lecture 32
6
Stokes' analysis of viscous drag on a sphere of radius R
moving at speed u in medium with visc osity  :
FD   6Ru 
u
F
FD
Effects of drag force on motion of
particle of mass m with constant force F :
du
F  6Ru  m
with u (0)  0
dt
6R

t

F
m
1  e

 u (t ) 

6R 

11/16/2016
PHY 711 Fall 2016 -- Lecture 32
7
Effects of drag force on motion of
particle of mass m with constant force F :
du
F  6Ru  m
with u (0)  0
dt
u
6R

t


F
F
1  e m 
 u (t ) 
FD

6R 

u
11/16/2016
t
PHY 711 Fall 2016 -- Lecture 32
8
Effects of drag force on motion of particle of mass m
with an initial velocity with u (0)  U 0 and no external force
du
6 R u  m
dt
 u (t )  U 0e

u
6 R
t
m
FD
u
t
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
9
Recall: PHY 711 -- Assignment #24
Oct. 28, 2015
Determine the form of the velocity potential for an
incompressible fluid representing uniform velocity in the z
direction at large distances from a spherical obstruction
of radius a. Find the form of the velocity potential and the
velocity field for all r > a. Assume that for r = a, the
velocity in the radial direction is 0 but the velocity in the
azimuthal direction is not necessarily 0.
 0
2
3

a 
  r ,   v0  r  2  cos
2r 

11/16/2016
PHY 711 Fall 2016 -- Lecture 32
10
Newton-Euler equation for incompressible fluid,
modified by viscous contribution (Navier-Stokes equation):
v
p  2
  v    v  f applied 
  v
t
 
Continuity equation:   v  0
v
Assume steady state: 
0
t
Assume non-linear effects small
Initially set f applied  0;
  p   v
2
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
11
 p   2 v
Take curl of both sides of equation:
    p   0      v 
2
Assume (with a little insight from Landau):
v      f  r  u   u
where
f (r ) 
0
r 
Note that:
    A      A   2A
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
12
Digression
Some comment on assumption: v       f  r  u   u
    A      A   2A
Here A  f  r  u
  v          A        2 A 
Also note :
p   v
2
   p     2 v
11/16/2016
or  2   v   0
PHY 711 Fall 2016 -- Lecture 32
13
v      f r u   u
u  uzˆ
2
ˆ
ˆ
    f r z     f r z    f (r )zˆ
  2   v   0
 v  0
 4   f (r )zˆ   0
  4 f (r )  zˆ   0
  4 f (r )  0
C4
f (r )  C1r  C2 r  C3 
r
2C2 2C4 
 2 df 

vr  u cos 1 
 3 
  u cos  1  4C1 
r
r 
 r dr 

2
 d 2 f 1 df 
C2 C4 

v  u sin  1  2 
 3
  u sin  1  4C1 
dr
r dr 
r
r 


11/16/2016
PHY 711 Fall 2016 -- Lecture 32
14
Some details:
2
d
2 d 
 f (r )  0
 2 
 f (r )  0
r dr 
 dr
C4
2
f (r )  C1r  C2 r  C3 
r
v  u      f  r  zˆ   zˆ
2
4

 


=u     f  r  zˆ    2 f (r ) zˆ  zˆ

Note that: zˆ  cos  rˆ  sin  θˆ
  df


2
ˆ
v  u    cos      f (r )   1 cos rˆ  sin  θ 

  dr


11/16/2016
PHY 711 Fall 2016 -- Lecture 32

15
2C2 2C4 
 2 df 

vr  u cos 1 
 3 
  u cos  1  4C1 
r
r 
 r dr 

 d 2 f 1 df 
C2 C4 

v  u sin  1  2 
 3
  u sin  1  4C1 
dr
r dr 
r
r 


To satisfy v(r  )  u :
 C1  0
To satisfy v( R)  0
solve for C2 , C4
 3R R 3 
vr  u cos 1 
 3
2r 2r 

 3R R 3 
v  u sin  1 
 3
4r 4r 

11/16/2016
PHY 711 Fall 2016 -- Lecture 32
16
 3R R 3 
vr  u cos  1 
 3 
 2r 2r 
 3R R 3 
v  u sin  1 
 3 
 4r 4r 
Determining pressure :

 3R  
p   v   u cos   2  
 2r  

 3R 
 p  p0  u cos   2 
 2r 
2
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
17
 3R 
p  p0   u cos  2 
 2r 
Corresponds to:
FD cos   p ( R )  p0  4 R
2
 FD =   u  6 R 
u
FD
11/16/2016
PHY 711 Fall 2016 -- Lecture 32
18
Related documents