Download Lecture_18_mode_shapes

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
AAE 556
Aeroelasticity
Lecture 18
Resonance, Mode shapes
x
restrict to small angle
h(t)
(t)
c.g.
shear
center
xcg
http://paws.kettering.edu/~drussell/Demos/Flexural/bending.html
http://vodpod.com/watch/1799999-sand-vibration-patterns-chladni-plate
Purdue Aeroelasticity
18-1
Summary
• MDOF systems with n degrees of freedom
have n possible “modes of motion”
• Mode of motion means a (natural, resonant)
frequency with a well-defined mode shape
• Eigenvectors – another word for mode
shapes – provide information about node
lines or node points
• Experiments provide node lines and
frequencies to compare with analysis
18-2
Purdue Aeroelasticity
Typical section equations of motion - 2 dof
x
restrict to small angle
h(t)
(t)
c.g.
shear
center
xcg
ht   plunge freedom (bending )
 t   pitch freedom twist 
measured from static equilibrium position
18-3
Purdue Aeroelasticity
Review - Equations of motion for
free vibration
 m
mx
 
mx  h  K h
   

I     0
Trial solution
assume harmonic motion
0  h  0
  

KT    0
ht  h  it
    e
 t   
result
 m
 
mx
2
mx  h  it  K h
 e  

I   
0
0  h  it 0
 e   

KT   
0
18-4
Purdue Aeroelasticity
Harmonic forcing at or near the natural
frequencies
x
mx   h   Kh
  

I     0
 m
 mx
 
Trial solution
harmonic motion
restrict to small angle
0  h 
 1  it
   Fo   e

KT   
d 
h(t)
(t)
c.g.
shear
center
xcg
ht  h  it
    e
 t   
result
 m
 
mx
2
mx  h  it  K h
 e  

I   
0
0  h  it
1  it
 e  Fo  e

KT   
d 
18-5
Purdue Aeroelasticity
Harmonic forcing at or near the natural
frequencies
 m
 
mx
2
mx  h  it  K h
 e  

I   
0
0  h  it
1  it
 e  Fo  e

KT   
d 
2
2


h

 1 
(


I

K
)
(

mx )
F
 

T
o
  
 
2
2
( mx )
( m  K h )  d 

 
 
    m  Kh   I  KT     mx   0
2
2
2
2
At or near resonance, the amplitude of the response is large
(here it is infinite because we have no damping)
18-6
Purdue Aeroelasticity
Defining mode shapes
what will the vibrations look like if we force the
system at natural frequencies?
(1)
(2)
2
(  i2 m  K h )
(  i mx )

2
2
 (  i mx ) (  i I  KT
  h  0 
    
)   0 
eigenvalues & eigenvectors
h


2
( i mx )
( i2 m  K h
)
or
2
( i I  KT )
( i2 mx )
18-7
Purdue Aeroelasticity
A different expression

KT 
2

    i 
2
I 
(  i x )
h


or
Kh 
 

2
2 mx 



 i

   i

m 

I 

h


2
(  i x )
(  i2   h2
)
or
2
(  i
  )
 2 x 
i 2 


r
 

2
18-8
Purdue Aeroelasticity
System mode shapes
x
If  is 1 then how much is h?
restrict to small angle
h(t)
(t)
c.g.
shear
center
xcg
 2 x 
b  i

h
b


 (i2   h2 )
or
b(i2  2 )
 2 x b 2 
 i
2 
b
r
 

18-9
Purdue Aeroelasticity
example
x
restrict to small angle
h(t)
(t)
c.g.

 i2 
m
mx
mx  h  it  K h
 e  
I   
0
0  h  it 0 
 e   
KT   
0 
shear
center
xcg
x  0.10b
r  0.25b
2
Kh
h 
 10 rad / sec.
m
  25 rad / sec .
1  0.3985 
2  1.0245 
2
18-10
Purdue Aeroelasticity
example
reference
 h  10 rad / sec .
actual
1  0.3985 
reference
  25 rad / sec .
actual
2  1.0245 
bending
torsion
18-11
Purdue Aeroelasticity
Mode shape
1  0.3985 
h
b  13.245


2 x 
  0.3985

h
b 
b  
2 



 0.3985 2  h2 



 

When we let h/b=1 then we are
asking about the amount of q in the
plunge mode
1 unit
 
  h
1
b 13.245
18-12
Purdue Aeroelasticity
Shake testing identifies modes and
frequencies
http://macl.caeds.eng.uml.edu/umlspace/feb98.pdf
18-13
Purdue Aeroelasticity
Torsional frequency and mode shape
 2  1.0245 
h
b
1 radian
  0.118 
node point
18-14
Purdue Aeroelasticity
Node point definition
A point in space where there is no displacement,
velocity or acceleration when the structure is
vibrating at a natural frequency
z t   ht   x t   h  x e
it
x
z  t   0   h  xo  e
i t
18-15
Purdue Aeroelasticity
Node point depends on eigenvector
h  x    0
x
o
xo  
h

h
first mode
divide by b
b  13.245

h
xo
 b
b

xo
 13.243
b
18-16
Purdue Aeroelasticity
Node point for second frequency
h
xo
 0.118
b
b  0.118

18-17
Purdue Aeroelasticity
Summary
• MDOF systems have n modes of motion
• Mode of motion means a (natural,
resonant) frequency with a mode shape
• Eigenvectors – mode shapes – provide
node lines or node points
• Experiment provides node lines and
frequencies
18-18
Purdue Aeroelasticity
Related documents