Download A Coevolution Scheme for Supermassive Black Holes and Galactic

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Masayuki UMEMURA
Center for Computational Physics, University of Tsukuba, Japan
Collaborators
Nozomu KAWAKATSU
Masao MORI
Jun’ichi SATO
Black Hole-Bulge Correlation
1. BH-Bulge Mass Relation
 MBH /Mbulge  0.001
(Kormendy & Richstone 1995; Richstone 1995; Magorrian et al. 1998;
Merrifield et al. 2000; Kormendy 2000; Merritt & Ferrarese 2001)
 MBH Mbulge1.53
MBH /Mbulge  0.005(MV -22) ; MBH /Mbulge  0.0005 (MV -18)
(Laor 2001)
2. MBH- Relation
MBH, =4.72 (Ferrarese & Merritt 2000; Merrit & Ferrarese 2000)
MBH, =3.75 (Gebhardt et al. 2000)
MBH, =4.02±0.32 (Tremaine et al. 2002 )
3. MBH /Mdisk  0.005 for Disk component (Salucci et al. 2000; Sarzi et al. 2000)
Why does SMBH mass linearly correlate with bulge mass ?
What is the basic physics to determine
MBH /Mbulge  O(10-3) ?
Present Prediction
MBH
Mbulge
0.14  0.001
(erad  l*t*
0.14  m*c 2 )
( = 0.007 : H  He nuclear fusion energy
conversion efficiency)
Richstone 1995
Relativistic Radiation Hydrodynamics
(Umemura et al. 1997; Fukue et al. 1997; Umemura et al. 1998)
dv r
1 dP d   r



 ( F  v r E  v r P rr  v  P r )
dt
r
 dr dr c
v
2
Radiation Drag
1 d ( rv )  
 ( F  v E  v P  v r P r )
r dt
c
Radiation Drag
 : dust extinction
F : radiation flux
E: radiation energy density
P: radiation stress-tensor
Angular Momentum
Extraction
e.g. Poynting-Robertson effect
in solar system
Sato & Umemura, in preparation
0.6
0.5
radiation field
2

  Rh 
L*
3
E  3.45 10 

 erg cm
12
 3 10 L   1 kpc 
2
Y
0.4
0.3
0.2
0.1
velocity
vd 
0
1
2

1
2
 M
  R 
GM tot
 6.67 107  11tot   h  cm s -1
Rh
 10 L   1 kpc 
cold gas
Tc  102 K, M c  105 M , Rc  10 pc
Momentum loss
px (t )  px 0e
t / t
t  2.02 108 yr
0
X
0.5
1
SMBH Formation by Radiation Drag in Bulge
Umemura, 2001, ApJ, 560, L29
Kawakatsu & Umemura, 2002, MNRAS, 329, 572
Angular Momentum Extraction
Bulge
L*

d ln J
dt

E
c

 L
c2 R2

(: optical depth by dust)
R
MDO
L

(1

e
)
2
c Mg
photon number
conservation
Mass Accretion Rate
(Massive Dark Object)
d ln J
M  M g
dt
L

(1

e
)
2
c
Optically-Thick Regime
Mass Accretion Rate
L
L 
-1 

0.1
M
yr
 12 
c2
 10 L 
M
 M Edd
 M BH 
 0.2 M yr   8

 10 M 
-1
1
Radiation Drag Time-Scale
tdrag
1
 L 
c R
2 Z 
7

 8.6  10 yr  12  Rkpc 

 L
10
L
Z




2
2
Mass of MDO
t
M MDO   Mdt
0

t
0
L / c2dt
1
Mass Accretion by Radiation Drag
M
L
c2
M

M
L
 kt

0.14

ke
Mc 2
MDO-Bulge Mass Ratio
t M
M MDO


dt  0.14 (1  e  kt )
0 M
M

M (1  ekt )  M (1  f g )  M bulge (stellar component)
M MDO

M bulge
0.14 1  0.001 1
( = 0.007,  = net stellar conversion eficiency)
BH Growth
Radiation Drag Growth
M MDO  0.14
L=LEdd
M

(1  e  kt ) M

MMDO
Eddington Growth
M BH  M 0e t / tEdd
MBH
  L / LEdd
tEdd  1.9  1080.42 yr
tcross
 M BH
 M 0e t / tEdd

 M MDO

t  tcross
t  tcross
M BH
M bulge
[tcross  4tEdd 1  10910 yr for   0.1  1]
 
0.14 1  0.002 

0.5


1
t
SMBH to Bulge Mass Correlation
Present Prediction
Rees Diagram
(1984)
radiation drag
103 M d MBH d 1010 M
MBH- Relation
Radiation drag: M BH  M
GM
Virialization:
  2 , Rvir
Rvir
1
Rmax  M 1/ 3 (1  zmax ) 1
2
CDM fluctuations: (1  zmax )   CDM  M   (  16 )

M BH  M   6 /(23 )
e.g. M BH   4 for  = 16
 M BH   4 in more massive bulge 


4
M


in
less
massive
bulge
 BH

MBH- Relation
Present Prediction
Tremaine et al. 2002
Why small BHs in disks?
 Disks without AGNs
 Sy1s
 Sy2s
 NLSy1s
0.03
Kawakatu & Umemura 2003
submitted to ApJ
0.1
f bulge  M bulge / M galaxy
1
Geometrical Dilution of Radiation Fields
Elliptical Galaxies
Disk Galaxies
low drag efficiency
high drag efficiency
 Disks
without AGNs
 Sy1s
 Sy2s
 NLSy1s
Present Prediction
Sy1
with
Starburst
0.03
0.1
f bulge  M bulge / M galaxy
Sy2 with starburst
1
 NLS1s
Coevolution of SMBHs and Bulges
 SMBHs have been thought to be the central engine of AGNs.
z=6.3 QSO  tBH109yr
 QSO hosts are mostly luminous, well evolved elliptical galaxies.
 Recently, the demography of galactic centers have shown a
tight correlation between SMBHs and galactic bulges.
The formation and evolution of SMBH, bulge, and QSO are
mutually related.
ULIRG
QSO
>1
LLAGN
<1
Mbulge(star)
MBH
MMDO
LAGN
L*
tw
tcross(109-10yr)
t
• There is time delay between L* and LAGN. LAGN/L* increases until tcross .
• LAGN is peaked around tcross. (QSO phase)
• MBH /Mbulge increases with LAGN or age until tcross .
Radiation Hydrodynamic Growth of BH
via Radiation Drag
+
Chemical Evolution of Bulge
PEGASE (Foic & Rocca-Volmerange 1997)
Evolutionary spectral synthesis code
Kawakatu, Umemura & Mori, 2003, ApJ, 583, 85
Optical Depth Evolution
Galactic wind
100
10
1
0.1
0.01
0.001
tthin
107
tw
108
Time [yr]
109
Luminosity Evolution
<1
Lbulge
13
10
1012
ULIRG
1011
1010
10
M BH
Galactic wind
>1
1014
LLAGN
LAGN
tw tcrit
9
108
109
tcross
1010
Time [yr]
• LAGN /Lbulge exhibits a AGN-dominant peak around 109yr. (QSO phase)
• QSO phase is preceded by an optically thin, host-dominant “proto-QSO” phase.
• Proto-QSO phase is preceded by an optically thick, host-dominant phase. (ULIRGs)
5000
v BLR
Emission Line Width
(Kaspi et al.1997; Loar et al. 1997; Peterson et al. 2000)
 1700  M 10 M  km/s
8
14
BH
>1
<1
1500
1000
100
ULIRG
LLAGN
tw tcrit
108
109
tcross
1010 Time [yr]
 In Proto-QSO phase, the width of broad emission lines is less than 1500km/s.
Proto-QSO = NLQSO1 = Growing BH phase
“A Coevolution Scheme for SMBHs and Galactic Bulges“
LBG
ULIRG
Proto-QSO
QSO
LLAGN
<1
>1
<1
<1
<1
Bulge
enshrouded BH
Type 2 QSO
Nucleus
10-100 pc
tthin  107 yr
growing BH
twin  1089 yr
tcross  109 yr
time
Summary on BH Formation
• MBH /Mbulge  0.14  =0.001 : Radiation drag growth
(key physics: =0.007)
• MBH - Relation: CDM spectrum
• MBH /Mbulge  0.005 for Disks: Geometrical dilution
Summary on Coevolution
• LAGN /Lbulge exhibits a AGN-dominant peak around 109yr. (QSO phase)
MBH /Mbulge  10-4-10-3 in QSO phase (key physics:  = 0.007)
• QSO phase is preceded by a host-dominant “proto-QSO” phase.
MBH /Mbulge < 10-5 -10-4 in proto-QSO (growing BH phase)
Proto-QSOs are narrow line QSOs.
Their properties are similar to those of high redshift radio galaxies.
• Proto-QSO phase is preceded by an optically thick, host-dominant phase. (ULIRGs)
Thank you
for attention
Related documents