Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Masayuki UMEMURA Center for Computational Physics, University of Tsukuba, Japan Collaborators Nozomu KAWAKATSU Masao MORI Jun’ichi SATO Black Hole-Bulge Correlation 1. BH-Bulge Mass Relation MBH /Mbulge 0.001 (Kormendy & Richstone 1995; Richstone 1995; Magorrian et al. 1998; Merrifield et al. 2000; Kormendy 2000; Merritt & Ferrarese 2001) MBH Mbulge1.53 MBH /Mbulge 0.005(MV -22) ; MBH /Mbulge 0.0005 (MV -18) (Laor 2001) 2. MBH- Relation MBH, =4.72 (Ferrarese & Merritt 2000; Merrit & Ferrarese 2000) MBH, =3.75 (Gebhardt et al. 2000) MBH, =4.02±0.32 (Tremaine et al. 2002 ) 3. MBH /Mdisk 0.005 for Disk component (Salucci et al. 2000; Sarzi et al. 2000) Why does SMBH mass linearly correlate with bulge mass ? What is the basic physics to determine MBH /Mbulge O(10-3) ? Present Prediction MBH Mbulge 0.14 0.001 (erad l*t* 0.14 m*c 2 ) ( = 0.007 : H He nuclear fusion energy conversion efficiency) Richstone 1995 Relativistic Radiation Hydrodynamics (Umemura et al. 1997; Fukue et al. 1997; Umemura et al. 1998) dv r 1 dP d r ( F v r E v r P rr v P r ) dt r dr dr c v 2 Radiation Drag 1 d ( rv ) ( F v E v P v r P r ) r dt c Radiation Drag : dust extinction F : radiation flux E: radiation energy density P: radiation stress-tensor Angular Momentum Extraction e.g. Poynting-Robertson effect in solar system Sato & Umemura, in preparation 0.6 0.5 radiation field 2 Rh L* 3 E 3.45 10 erg cm 12 3 10 L 1 kpc 2 Y 0.4 0.3 0.2 0.1 velocity vd 0 1 2 1 2 M R GM tot 6.67 107 11tot h cm s -1 Rh 10 L 1 kpc cold gas Tc 102 K, M c 105 M , Rc 10 pc Momentum loss px (t ) px 0e t / t t 2.02 108 yr 0 X 0.5 1 SMBH Formation by Radiation Drag in Bulge Umemura, 2001, ApJ, 560, L29 Kawakatsu & Umemura, 2002, MNRAS, 329, 572 Angular Momentum Extraction Bulge L* d ln J dt E c L c2 R2 (: optical depth by dust) R MDO L (1 e ) 2 c Mg photon number conservation Mass Accretion Rate (Massive Dark Object) d ln J M M g dt L (1 e ) 2 c Optically-Thick Regime Mass Accretion Rate L L -1 0.1 M yr 12 c2 10 L M M Edd M BH 0.2 M yr 8 10 M -1 1 Radiation Drag Time-Scale tdrag 1 L c R 2 Z 7 8.6 10 yr 12 Rkpc L 10 L Z 2 2 Mass of MDO t M MDO Mdt 0 t 0 L / c2dt 1 Mass Accretion by Radiation Drag M L c2 M M L kt 0.14 ke Mc 2 MDO-Bulge Mass Ratio t M M MDO dt 0.14 (1 e kt ) 0 M M M (1 ekt ) M (1 f g ) M bulge (stellar component) M MDO M bulge 0.14 1 0.001 1 ( = 0.007, = net stellar conversion eficiency) BH Growth Radiation Drag Growth M MDO 0.14 L=LEdd M (1 e kt ) M MMDO Eddington Growth M BH M 0e t / tEdd MBH L / LEdd tEdd 1.9 1080.42 yr tcross M BH M 0e t / tEdd M MDO t tcross t tcross M BH M bulge [tcross 4tEdd 1 10910 yr for 0.1 1] 0.14 1 0.002 0.5 1 t SMBH to Bulge Mass Correlation Present Prediction Rees Diagram (1984) radiation drag 103 M d MBH d 1010 M MBH- Relation Radiation drag: M BH M GM Virialization: 2 , Rvir Rvir 1 Rmax M 1/ 3 (1 zmax ) 1 2 CDM fluctuations: (1 zmax ) CDM M ( 16 ) M BH M 6 /(23 ) e.g. M BH 4 for = 16 M BH 4 in more massive bulge 4 M in less massive bulge BH MBH- Relation Present Prediction Tremaine et al. 2002 Why small BHs in disks? Disks without AGNs Sy1s Sy2s NLSy1s 0.03 Kawakatu & Umemura 2003 submitted to ApJ 0.1 f bulge M bulge / M galaxy 1 Geometrical Dilution of Radiation Fields Elliptical Galaxies Disk Galaxies low drag efficiency high drag efficiency Disks without AGNs Sy1s Sy2s NLSy1s Present Prediction Sy1 with Starburst 0.03 0.1 f bulge M bulge / M galaxy Sy2 with starburst 1 NLS1s Coevolution of SMBHs and Bulges SMBHs have been thought to be the central engine of AGNs. z=6.3 QSO tBH109yr QSO hosts are mostly luminous, well evolved elliptical galaxies. Recently, the demography of galactic centers have shown a tight correlation between SMBHs and galactic bulges. The formation and evolution of SMBH, bulge, and QSO are mutually related. ULIRG QSO >1 LLAGN <1 Mbulge(star) MBH MMDO LAGN L* tw tcross(109-10yr) t • There is time delay between L* and LAGN. LAGN/L* increases until tcross . • LAGN is peaked around tcross. (QSO phase) • MBH /Mbulge increases with LAGN or age until tcross . Radiation Hydrodynamic Growth of BH via Radiation Drag + Chemical Evolution of Bulge PEGASE (Foic & Rocca-Volmerange 1997) Evolutionary spectral synthesis code Kawakatu, Umemura & Mori, 2003, ApJ, 583, 85 Optical Depth Evolution Galactic wind 100 10 1 0.1 0.01 0.001 tthin 107 tw 108 Time [yr] 109 Luminosity Evolution <1 Lbulge 13 10 1012 ULIRG 1011 1010 10 M BH Galactic wind >1 1014 LLAGN LAGN tw tcrit 9 108 109 tcross 1010 Time [yr] • LAGN /Lbulge exhibits a AGN-dominant peak around 109yr. (QSO phase) • QSO phase is preceded by an optically thin, host-dominant “proto-QSO” phase. • Proto-QSO phase is preceded by an optically thick, host-dominant phase. (ULIRGs) 5000 v BLR Emission Line Width (Kaspi et al.1997; Loar et al. 1997; Peterson et al. 2000) 1700 M 10 M km/s 8 14 BH >1 <1 1500 1000 100 ULIRG LLAGN tw tcrit 108 109 tcross 1010 Time [yr] In Proto-QSO phase, the width of broad emission lines is less than 1500km/s. Proto-QSO = NLQSO1 = Growing BH phase “A Coevolution Scheme for SMBHs and Galactic Bulges“ LBG ULIRG Proto-QSO QSO LLAGN <1 >1 <1 <1 <1 Bulge enshrouded BH Type 2 QSO Nucleus 10-100 pc tthin 107 yr growing BH twin 1089 yr tcross 109 yr time Summary on BH Formation • MBH /Mbulge 0.14 =0.001 : Radiation drag growth (key physics: =0.007) • MBH - Relation: CDM spectrum • MBH /Mbulge 0.005 for Disks: Geometrical dilution Summary on Coevolution • LAGN /Lbulge exhibits a AGN-dominant peak around 109yr. (QSO phase) MBH /Mbulge 10-4-10-3 in QSO phase (key physics: = 0.007) • QSO phase is preceded by a host-dominant “proto-QSO” phase. MBH /Mbulge < 10-5 -10-4 in proto-QSO (growing BH phase) Proto-QSOs are narrow line QSOs. Their properties are similar to those of high redshift radio galaxies. • Proto-QSO phase is preceded by an optically thick, host-dominant phase. (ULIRGs) Thank you for attention