Download physics review

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Calculate work done by expanding gas of 1 mole if initial pressure is 4000
Pa, initial volume is 0.2 m3.
Assume a two processes: (1) isobaric expansion to 0.3 m3 (2) isothermal
expansion to 0.3 m3.
1. Isobaric expansion:
W  PV  P V f  Vi   4000 Pa  0.3m3  0.2m3 
 400 J
Also:
Pf V f
3
0.3
m
nR 


 1.5
3
PV
Ti
Vi 0.2m
i i
nR
Tf
Vf
A 50% increase in temperature!
2. Isothermal expansion:
W
Vf
Vf
Vi
Vi
 PdV  
nRT
dV
V
 Vf 
 Vf 
 nRT ln    PV

i i ln 
V
V
 i 
 i 
0.3m3
3
  4000 Pa   0.2m  ln
 324 J
3
0.2m
Also:
Vi
0.2m3
Pf  Pi
 4000 Pa
 2667 Pa
3
Vf
0.3m
A ~67% decrease in pressure!
A
An infinitely long wire, as shown in the figure, is uniformly charged with
density of λ. The radius of the ¼ circle is R. Find the electric field at O.
∞
R
y  R tan  , r 
y
cos 
∞
1  dy
dE 
(cos  iˆ  sin  ˆj )
2
4 0 r
A θ O
x
θ
1 

(cos  iˆ  sin  ˆj )d
4 0 R
B
 /2

E1 
0

4 0 R
(cos  iˆ  sin  ˆj )d
 ˆ ˆ
(i  j )
1
4 0 R
E2 
B∞

1
1

4 0 R
(iˆ  ˆj )
E  E1  E 2  E3
1  Rd
(cos  iˆ  sin  ˆj )
2
4 0 R
 /2
1  Rd
ˆ  sin  ˆj )   (iˆ  ˆj )
E3  
(cos

i
4 0 R 2
4 0 R
0
dE 
AB
∞
A uniformly charged sphere (charge density of ρ) with a sphere hole inside is
shown in the figure. Find the electric field intensity at the center of the hole.
1
Filled:
 E  dS    q
i
0
s
i
4
  ( d  r )3
E1 4 (d  r ) 2  3
0
 (d  r )
E1 
3 0
Contribution from filled part:
E2  0
 (d  r )
E  E1  E2 
3 0
O
d
r
Two point charges (q and -2q) are located at x=1m and x=-1m, respectively.
Another point charge is located on the X axis. What is the position of this charge
so that the net electric force on it is zero?
q
4 0  x  1
2

2q
4 0  x  1

x  3 2 2

x  3  2 wrong!

x  3 2 2

2
0
Find the magnetic field intensity at P.
I
30o
30o
B  B1  B2

0 I
4r
[sin 60  sin(90)] 
0 I
4r
[sin 90  sin(60)]
r =0.1 cm
P
An electron is passing A with a speed of 104 m/s in a perpendicular magnetic field.
Find the radius of the electron’s circular motion and the frequency of the cyclotron.

v
 F  qvB  m v R
2
mv
R 
qB
frequency
A
v
qB
f 

2 R
2 m

B
A straight long wire with current I is placed beside a metallic trapezoid .
ab=bc=ad=L. Distance between point d and the wire is l. The trapezoid freely
falls a height H from still.
Find 1) the instant induced current in the trapezoid when it falls H.
2) the potential difference between dc at that moment.
I 0
dc  2L
a
c
Vdc   (v  B)  d l   vB d l
d
d
2L




0 I
2
l
c
2 gH 
0 I
2(r  l )
l  2L
2 gH ln
l
dr
b
60°60o c
d
I
H
A setup of double-slit interference is shown below. D=1.2m, d=0.45mm. If the
distance between adjacent bright lines on the screen is 1.5mm. Find the wavelength
of the source light.
P
S1
S

d
D
S2
△x
 d sin 
d sin   n
d sin  '  (n  1)
D
y  D(tan  ' tan  )  D(sin  ' sin  ) 
d
d y

 ...
D
In experiment of Fraunhofer diffraction from a single slit, f = 0.5m,=5000Å,
the width of the slit a=0.1mm. Find the width of central maximum
P1
asin =2( /2)
the width of central maximum
2 x  2 f tg 1
 2 f sin1
2f

a
x
0
1
f
A space craft with a proper length of L0=90m moves at v=0.8c with respect to one
observer. Measured by the observer, What is the time interval between the craft’s
head and end passing through the observer?
L  L0 1  (v / c) 2  54m
△t1 = L/v =2.25×10-7 s
Related documents