Download Flow Proof Puzzles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Name:
Date:
Accelerated Geometry
Unit 8: Flow Proofs
Flow Proof Puzzles
Below are two-column proofs which need some rearranging.
Use the puzzle templates and order the proofs correctly.
1. Given: AB  CD
AC  BD
Prove: ACB  DBC
A
B
C
D
E
Page 1
Statements
Reasons
CB  CB
Reflexive
ACB  DBC
CPCTC
AC  BD
Given
ACB  DBC
SSS
AB  CD
Given
Mr. S. Cella
Murray Avenue M.S.
2. Given: AB CD
AB  CD
Prove: AC  BD
Statements
Reasons
A
B
ACB  DBC
SAS
AB CD
Given
C
D
E
F
AB  CD
Given
AC  BD
CPCTC
ABC  DCB
Alternate Interior Angles
CB  CB
Reflexive
Page 2
Mr. S. Cella
Murray Avenue M.S.
3. Given: AB  CB
A  C
DB bi sec ts ABC
Prove: AD  CD
A
B
C
D
E
F
Page 3
Statements
Reasons
DB bi sec ts ABC
Given
ADB  CDB
ASA
A  C
Given
AD  CD
CPCTC
ABD  CBD
AB  CB
Definition of bisector
Given
Mr. S. Cella
Murray Avenue M.S.
4. Given: ZX WY
P is the midpoint of ZY
Prove: XP  WP
A
B
C
D
E
F
G
Page 4
Statements
Reasons
ZP  YP
Definition of Midpoint
P is the midpoint of ZY
Given
XP  WP
CPCTC
XPZ  WPY
Vertical Angles are Congruent
XZP  WYP
ZX WY
ASA
Z  Y
Given
Alternate Interior Angles
Mr. S. Cella
Murray Avenue M.S.
Related documents