Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Solutions to the Practice Problems for the Final Exam
1. Problem: Suppose that X and Y are independent exponential random variables with
parameter X and Y respectively.
(a) Find E (2 X 3Y ) and Var (2 X 3Y ) in terms of X and Y .
(b) Find E (2 X 3Y ) 2 in terms of X and Y .
(c) Find the correlation of X and X Y in terms of X and Y .
(d) Assume X 3 and Y 1 . Find P( X Y 2) .
2
Solution: (a) E (2 X 3Y ) 2 E ( X ) 3E (Y )
3
X
. Because X and Y are
Y
independent, Var (2 X 3Y ) 4Var ( X ) 9Var (Y )
4
2
X
9
Y2
.
(b)
2
2
3
8
12
18
E (2 X 3Y ) Var (2 X 3Y ) [ E (2 X 3Y )] 2 2
2
2
X Y X Y X X Y Y
2
(c) Cov( X , X Y ) Cov( X , X ) Cov( X , Y )
Var ( X Y ) Var ( X ) Var (Y ) 2Cov( X , Y )
(X , X Y )
4
2
Cov( X , X Y )
X X Y
1
2
X
1
2
X
9
1
Y2
1/ X2
(1/ X ) 1/ 1/
2
X
1
0
2
Y
X2
and
. Thus,
Y
Y2
2
X
.
P( X Y 2) 1 P( X Y 2)
(d)
1
2
0
2 y
0
3e3 x e y dxdy
3 2 1 6
e e
2
2
2. Problem: Suppose Z1 , Z 2 and Z3 are independent N (0,1) random variables. Find
(a) P(Z1 Z 2 Z3 ) ;
(b) E ( Z1Z 2 Z3 ) ;
(c) Var (Z1Z 2 Z3 ) ;
(d) P(Z1 Z3 ) ;
(e) P(max(Z1 , Z 2 ) Z3 ) (f) P( Z12 Z 22 1)
(g) P( Z1 Z 2 Z3 2) (h) P( Z1 / Z 2 1)
(i) P(3Z1 2Z 2 4Z3 1)
Solution:
(a) 1/6, by symmetry, all 3!=6 orderings of Z1 , Z 2 , Z3 are equally likely.
(b) Since Z1 , Z 2 , Z3 are independent, E (Z1Z 2 Z3 ) E (Z1 ) E (Z 2 ) E (Z3 ) 0 .
(c)
Var ( Z1Z 2 Z3 ) E ( Z12 Z 2 2 Z32 ) ( E ( Z1Z 2 Z3 ))2
E ( Z12 ) E ( Z 2 2 ) E ( Z32 ) ( E ( Z1Z 2 Z3 )) 2 1
where the second equality follows from Z1 , Z 2 , Z3 being independent.
1
(d) P( Z1 Z 3 ) P( Z1 Z 3 ) since Z1 Z3 ~ N (0, 2) is symmetric about 0.
2
(e)
P(max(Z1 , Z 2 ) Z3 ) 1 P(max(Z1 , Z 2 ) Z3 ) 1 P(Z3 is the largest)
1 1/ 3 2 / 3
(f) P( Z12 Z 22 1) e 1/ 2 (see Example 6.3b, page 282).
(g) Z1 Z 2 Z3 ~ N (0,3) so
2
Z Z 2 Z3
2
P( Z1 Z 2 Z3 2) P 1
0.8759
3
3
3
3
(h) P(Z1 / Z 2 1) P(Z1 Z 2 , Z 2 0) P(Z1 Z 2 , Z 2 0) = .
4
(i) Note that 3Z1 2Z2 4Z3 ~ N (0, 29) so
1
3Z 2Z 2 4Z3
1
P(3Z1 2Z 2 4Z3 1) P 1
0.5737
29
29
29
3. Problem: Suppose that U ~ uniform(0,2 ) and independently V ~ exponential(1) .
Show that
X 2V cos U , Y 2V sin U
are independent standard normal random variables.
Solution: We use the method of Section 6.7 for finding the joint probability distribution
of functions of random variables. The transformation from (U ,V ) to ( X , Y ) is
g1 (u, v) 2v cos u, g2 (u, v) 2v sin u
and the inverse transformation is
tan 1 ( y / x)
x>0
1
tan ( y / x) x 0
u h1 ( x, y )
x 0, y 0,
( / 2)sign( y )
0
x 0, y 0
The Jacobian of the transformation is
2v ( sin u ) (2v)-1/2 cos u
J (u, v)
1
2v cos u
(2v)-1/2 sin u
v h2 ( x, y )
x2 y 2
2
Thus, using formula (7.1) on page 300,
f X ,Y ( x, y ) fU ,V (h1 ( x, y ), h2 ( x, y )) | J (u, v) |1
x2 y 2
1
exp
2
2
This is the joint density of two independent standard normal random variables.
4. Problem: I toss a coin which lands heads with probability p 1/ 3 . Let N H be the
number of tosses till I get a head, N HH the number of tosses till I get two heads in a row
and N HHH the number of tosses till I get three heads in a row. Find
(a) E ( N H ) ;
(b) E ( N HH ) ;
(c) E ( N HHH ) ;
(d) Generalize to find the expected number of tosses to obtain m heads in a row.
Solution:
(a) Note that N H ~ Geometric( p) so E ( N H )
1
3.
p
(b) Condition on whether the first toss was a head or a tail. Let Y be the number of heads
in the first toss. So Y 1 with probability p and 0 with probability 1 p . Then
E ( N HH ) E ( E ( N HH | Y )) pE ( N HH | Y 1) (1 p) E ( N HH | Y 0) .
Note that E ( N HH | Y 0) 1 E ( N HH ) and E ( N HH | Y 1) 2 p (2 E( N HH ))(1 p) .
Let q 1 p and x E ( N HH ) . Then it follows that
x p(2 p (2 x)(1 p)) (1 p)(1 x) q qx 2 p 2 2 pq xpq
and hence E ( N HH )
q 2 pq 2 p 2 1 p 1 1
2 2 3 9 12 .
1 q pq
p
p p
(c) Let NT be the number of tosses to obtain the first tail. Then N HHH 3 if NT 4 and
N HHH k N where the random variable N has the same distribution as N HHH if
NT k , k 1, 2,3 . Set x E ( N HHH ) . Then
x 3 p3 (3 x) p 2 q (2 x) pq (1 x)q
q 2 pq 3 p 2 q 3 p3 ( p pq p 2 q) x
and so x
q 2 pq 3 p 2 q q 3 p3 1 p p 2 1 1
1
2 3 3 9 27 39 .
2
3
1 q pq p q
p
p p
p
(d) x k 1 (k x) p k 1q mp m and so
m
x
kp k 1q mp m
k 1
m
1 k 1 p k 1q
p m1
pm
m
1 k 1 p k 1 k 1 p k
m
1 p
kp k 1 k 1 kp k mp m
k 1
m
m
1 1
p p2
m
1
3 32
pm
3m
3m1 3
2
5. Problem: Let X 1 , X 2 , be a sequence of iid continuous random variables. Let N 2
be such that
X1 X 2 X N 1 X N .
That is, N is the point at which the sequence stops decreasing. Show that E ( N ) e .
Proof:
P( X 1 X 2
X N 1 X N ) P( X1 X 2 X N 1 ) P( X N X N 1 | X1 X 2 X N 1 )
1
We have P( X1 X 2 X N 1 )
because X1 X 2 X N 1 is one of
( N 1)!
( N 1)! equally likely orderings of X 1 , , X N 1 . We have
1 N 1
P( X N X N 1 | X 1 X 2 X N 1 ) 1 P( X N is minimum of {X 1 , , X N }) 1
N
N
1
N 1
1
Thus, P( X1 X 2 X N 1 X N )
and
( N 1)! N
( N 2)! N
1
1
1
E(N ) N
e .
( N 2)! N N 2 ( N 2)! i 0 i !
N 2
6. Problem: Let X and Y have the joint density
f ( x, y) cx( y x)e y , 0 x y .
(a) Find the constant c
(b) Find the conditional distribution of X given Y y .
(c) Find the conditional distribution of Y given X x .
(d) Find E ( X | Y y ) and E (Y | X x) .
Solution:
(a) 1
f ( x, y )dxdy
0
y
y
0
cx( y x)e y dxdy
(b) Note that fY ( y ) x( y x)e y dx
0
f X ( x | Y y)
c 3 y
y e dy c , thus c 1 .
6 0
1 3 y
y e . Hence,
6
f ( x, y )
6 x( y x) y 3 , 0 x y ,
f X ( x)
(c) f X ( x) x( y x)e y dy xe x . So
x
fY ( y | X x )
f ( x, y )
( y x )e ( y x ) , x y .
f X ( x)
y
(d) E ( X | Y y ) xf X ( x | Y y )dx 6 x 2 ( y x) y 3dx
0
1
y and
2
E (Y | X x) yfY ( y | X x)dy y( y x)e( y x ) dy x 2 .
x
7. Problem: An urn contains 10 red balls, 8 blue balls and 12 white balls. From this urn,
12 balls are randomly withdrawn. Let X be the number of red, and Y the number of blue
balls that are withdrawn. Find Cov( X , Y )
(a) by defining appropriate indicator random variables X i , Yi such that X i 1 X i and
10
Y j 1 Y j .
8
(b) by conditioning (on either X or Y) to determine E ( XY ) .
Solution:
(a) Number the red balls and the blue balls and let X i 1 if the ith red ball is selected and
let X i 0 otherwise. Similarly, let Y j 1 if the jth blue ball is selected and let
Y j 0 otherwise. Cov(i 1 X i , j 1Y j ) i 1 j 1 Cov( X i , Y j ) . Now,
10
8
10
8
E ( X i ) E (Y j ) 12 / 30 2 / 5 and
28 30
E ( X iY j ) P(red ball i and blue ball j are selected)= / 22 /145 . Thus,
10 12
2
96
22 2
.
Cov( X , Y ) 80
145
145 5
(b) We shall calculate E ( XY ) by conditioning on X. Note that given X, there are
12 X additional balls to be selected from among 8 blue and 12 white balls. Hence,
E ( XY | X ) XE (Y | X ) X (12 X )(8 / 20) .
Now since X is a hypergeometric random variable, it follows that E ( X ) 12(10 / 30) 4
and E ( X 2 ) Var ( X ) ( E ( X ))2 12(18)(1/ 3)(2 / 3) / 29 42 512 / 29 . As
2
E (Y ) 12(8 / 30) 16 / 5 , we obtain E ( XY ) (48 512 / 29) 352 / 29 and
5
Cov( X , Y ) 352 / 29 4(16 / 5) 96 /145 .
8. Problem: Let X 2U V and Y 3U 2V where U and V are independent standard
normal random variables.
(a) Find P( X 2Y 1) .
(b) Find the conditional distribution of U given X x .
(c) Find the conditional distribution of Y given X x .
Solution:
(a)
P( X 2Y 1) P(2U V 6U 4V 1) P(4U 3V 1)
4
3
1
P( U V ) (0.2) 0.5793
5
5
5
(b) Let X ' U 2V . Then X ' ~ N (0,5) and Cov( X , X ') 0 . So X and X ' are
uncorrelated and hence independent (since X and X ' are jointly bivariate normal).
2
1
2
1
2 1
U X X ' . Given X x , U x X ' ~ N ( x, ) .
5
5
5
5
5 5
(c) Similar to part (b), Y 3U 2V
Y
8
1
X X ' . Given X 2U V x ,
5
5
8
1
8 1
x X ' ~ N ( x, ) .
5
5
5 5
9. Problem: Let U1 ,U 2 ,
For x (0,1) , let
be a sequence of independent uniform (0,1) random variables.
n
N ( x) min{n : U i x} .
i 1
Find E[ N ( x )] by first showing by induction on n that for 0 x 1 and all n 0 ,
P( N ( x) n 1) x n / n!.
Solution: We first show by induction on n that for 0 x 1 and all n 0 ,
P( N ( x) n 1) x n / n!. The result is true when n 0 , so assume that
P( N ( x) n) x n1 /(n 1)!
Now,
1
P( N ( x) n 1) P{N ( x) n 1| U1 y}dy
0
x
P{N ( x y ) n}dy
0
x
P{N (u ) n}du
0
x
u n 1 /(n 1)!du by the induction hypothesis
0
xn / n!
which completes the proof. Then, using the result in Theoretical Exercises 5.2,
E[ N ( x)] n0 P{N ( x) n} n0 P{N ( x) n 1} n0 x n / n! e x .