Download Equation of Circles

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Equation of Circles
General Form
( x  a)  ( y  b)  r
2
2
2
where r is the radius and (a, b) is the centre.
Example

A circle of centre (5, −4) and radius 3 has
equation
( x  5)  ( y  (4))  3
2
2
( x  5)  ( y  4)  9
2
2
2
Centre (−1, 2), radius 7
( x  (1))  ( y  2)  7
2
2
( x  1)  ( y  2)  49
2
2
2
Centre (0, 0), radius 1
x  y 1
2
2
Centre (4, −3) and circle touches x-axis

Radius = 3
( x  4)  ( y  3)  9
2
2
Different Form
x  y  2 gx  2 fy  c  0
2
2
To find out what is g, f and c, expand the general form:
( x  a)2  ( y  b)2  r 2
x 2  2ax  a 2  y 2  2 yb  b2  r 2
Rearrange:
x 2  y 2  2ax  2 yb  a 2  b2  r 2  0
g = -a
centre  (a, b)  (−g, −f).
f = -b
c=
a 2  b2  r 2
Radius = a 2  b2  c  g 2  f 2  c
Example

Given equation of circle is ,
find its centre and radius.
x2  y 2  6x  4 y  9  0
x2  y 2  6x  4 y  9  0
From (1):
 (1)
2 g  6  g  3
2 f  4  f  2
c9
Centre is (3, 2) and radius is
(3) 2  (2) 2  9  2
Related documents