Download v 2 - Debis

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
MODELING OF ELECTRICAL SYSTEMS
1st METHOD
Current Law
(Kirchoff)
Voltage Law
2nd METHOD
Current Law
Magnetic Energy, Electrical Energy, Virtual Work:
Application of Lagrange’s Equation
2nd method is used in this course.
FUNDAMENTAL ELEMENTS OF ELECTRICAL SYSTEMS
Passive Elements
L
x
Analogy Between Mechanical and Electrical Systems
.
..
x
Velocity
(m/s)
x
Acceleration
(m/s2)
Generalized Coordinates
q
Charge
(Coulomb)
+
R
C
Displacement
(m)
Active Elements
i
Current
(Amper)
di
dt
m
Mass
(kg)
k
c
Spring Stiffness
Damping Constant
(N/m)
(Ns/m)
f  mx
1
E1  mx 2
2
f  kx
1
E 2  kx2
2
L
1/C
Inductance
C:Capacitance
(Farad)
(Henry)
di
dt
Generalized Charges
VL
Lagrange’s Equation
1
E1  Lq 2
2
Op-Amp
f
Force
(N)
f  cx
W   cx x
R
Resistance
(Ohm)
W  f x
V
Voltage
(Volt)
1
V  Ri
q
C
W  Vq
1 2 W   Rq q
E2 
q
2C
V
x
Analogy Between Mechanical and Electrical Systems
.
..
Displacement
(m)
x
Velocity
(m/s)
x
Acceleration
(m/s2)
m
Mass
(kg)
k
c
Spring Constant
Damping Constant
(N/m)
(Ns/m)
f
Force
(N)
θ
.
θ
..
θ
IG
Kr
Cr
Angular
Dispalement
Angular
Velocity
Angular
Acceleration
Mass
moment of
inertia
Rotational spring
constant
Rotational damping
constant
(Nm/rad)
Nm/(rad/s)
M
Moment
(Nm)
V
Voltage
(Volt)
δW
(rad)
(rad/s)
(rad/s2)
(kg-m2)
q
Charge
(Coulomb)
i
Current
(Amper)
L
1/C
Inductance
(Henry)
C:Capacitance
(Farad)
R
Resistance
(Ohm)
E2
E1
E1
E2
δW
1 2
q
2C
W   Rq q
1
E1  Lq 2
2
E2 
W  Vq
Current through R1= q  q 2
Modeling of Electrical Systems:
V1: Input q and q2 : Generalized charges
1 2
1 2
E1  Lq
E2 
q2
2
2C
W  V1q  R 1 (q  q 2 )(q  q 2 )  R 2q 2 q 2
Example 3.1:
L
+
V1
C
q 2
q
-
R1
R2
 ( V1  R 1q  R 1q 2 )q  ( R 1q  R 1q 2  R 2q 2 )q 2
Qq
Qq2
d   (E1  E 2 )   (E1  E 2 )
 Qq

dt 
q

q


  V1  R 1q  R 1q 2
Lq
d   (E1  E 2 )   (E1  E 2 )

 Qq 2


dt 
q 2
q 2


1
q 2  R 1q  ( R 1  R 2 )q 2
C
 R 1   q  0 0   q   V1 
   0 1      

R 1  R 2  q 2  
q
0
 C   2   
L=3.4 mH, C=286 µF, R1=3.2 Ω, R2=4.5 Ω
   R 1
 L 0  q

 0 0  q



  2   R1
Ls 2  R 1s
 R 1s
 R 1s
1 0
( R 1  R 2 )s 
C
D(s)=0.02618s3+26.288s2+11188.81s=0
Eigenvalues: 0, -502.06±418.70i (ξ=0.768)
Example 3.2 C1
q 4
C2
R1
q 1
V1
q 3
q 3
q 2
q f
No current flow through Op-Amp
q 1  q 2  q 3  q 4  q 4  q 1  q 2  q 3
q 4  q 3  q f
R3
E1  0 E2 
+
R2
 q f  q 1  q 2  q 3  q 3 q 1  q 2
1
1 2
(q 1  q 2  q 3 ) 2 
q3
2C1
2C2
W  V1q1  V2 (q1  q 2 )  R 1q 1q1
V2
 R 2q 2q 2  R 3q 3q 3
Input : V1 Generalized charges: q1, q2, q3
1
(q1  q 2  q 3 )  V1  V2  R 1q 1
C1


1
(q1  q 2  q 3 )  V2  R 2q 2
C1
1
1
(q1  q 2  q 3 )  q 3   R 3q 3
For Op-Amp : V+=V-=0
C1
C2
 1
1
1 


 C

C
C
1
1   q1 
 R 1 0  R 3   q 1   1
 V1 
1
1
   
0 R
 q     1

R
q 2    0 
2
3  2 

 C1 C1
C1     


0
R 3  q 3   1
 0
1
1
1  q 3   0 



 C1 C1 C1 C 2 
 R 3q 3  V2
R1
0

 0
0
R2
0
 1
 C
 R 3   q 1   1
1
 
R 3  q 2    

 C1


R 3  q 3   1

 C1
R 1s 
1
C1
1
C1
1

C1


1
C1
R 2s 
1
C1
1
C1
1
C1
1
C1
1
C1

1 
C1   q   V 
 1
1
1



 q    0 
2
C1     
1
1  q 3   0 


C1 C 2 

1
C1
1
R 3s 
0
C1
1
1
R 3s 

C1 C 2
 R 3s 
R1=15.9 kΩ, R2=837 Ω, R3=318 kΩ, C1=C2=0.005 µF
Eigenvalues: 0, -628.93±12561.76i (ξ=0.05)
GAIN CIRCUIT
R2
q
q 
R1
V1
+
q
V1  R 1q  0
0  R 2q  V2
V2
V1
R1
 R2
V1
 V2
R1
V2  
V2  
R2
V1
R1
R1
V1
q
R2
R2
V1
R1
R
q
R
+
V2'
+
V2
R

V2   2 V1
R1
V2  
 R
R 
R R
V2     2 V1   2 V1
R
R  R1  R1
INTEGRAL CIRCUIT
C
q
R
q
V1
+
V2
V2  
1
V1dt

RC
Rq  V1
V1  Rq  0
0
1
q  V2
C
q 
1
V1
R
q   q dt 
V2  
1
V1dt

R
1
V1dt
RC 
Negative sign can be eliminated bu adding an extra gain circuit with gain=1
q 3
R
R
Vc  (V1  V2  V3 )
R
V3
R
V2
V1
q 1
q
V1  Rq 1  0  q 1 
+
Vc
V V V 
 R  1  2  3   Vc
R R R
V2
 Vc  V1  V2  V3 
R
R
q 1
V
V2
, q 3  3
R
R
q  q 1  q 2  q 3
0  Rq  Vc
q 2 
R
V1
V1
R
Vc  V1  V2
R
+
R
q
+
V1
Vc
q 2
+
V2
0  q R  Vc
0  q R  Vc
q  q 1  q 2
R
V1  Rq 1  0
R
V
q 1   1
R

V2  q 2 R  0
q 2 
V2
R
 V V 
Vc  R   1  2 
 R R
Vc  V1  V2
Vc
R2
V2  K P V1  K I  V1dt  K D
R1
+
R
dV1
dt
R2
1
K D  R 4C4
KP 
KI 
R1
R 3C 3
C3
R
R3
+
R
+
R4
V1
C4
+
R
V2
PID Control Circuit
PID circuit is used frequently in Control Systems.