Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
CH. 4 – TRIGONOMETRIC FUNCTIONS 4.2 – The Unit Circle FUNDAMENTAL TRIG IDENTITIES Reciprocal Identities: 1 sec cos 1 csc sin Quotient Identities: sin tan cos Pythagorean Identities: sin 2 cos 2 1 tan 2 1 sec 2 1 cot 2 csc 2 cos cot sin 1 cot tan THE UNIT CIRCLE The unit circle follows the equation x2 + y2 = 1 Radius = 1, center at the origin Angles always have the initial side on the positive xaxis Consider the functions of an angle in the first quadrant that intersects the circle at (x, y): cos(θ) = x/1 = x sin(θ) = y/1 = y tan(θ) = y/x (x, y) From these 3 functions, we get… sec(θ) = 1/x csc(θ) = 1/y cot(θ) = x/y 1 y x SPECIAL RIGHT TRIANGLES Recall the dimensions of a 30-60-90 and a 45-45-90 right triangle: 2x x 2 x x 30º x 3 x 60º These relationships give us trigonometric values for common angles! 3 1 • At , (x, y) = , 6 2 2 (x, y) 2 2 • At , (x, y) = , 2 4 1 2 y • At x 3 , (x, y) = 1 , 3 2 2 1 3 , 2 2 2 2 , 2 2 3 1 2π/3 , 3π/4 2 2 5π/6 (-1, 0) 135º π π/2 π/3 π/4 120º 150º 1 3 , 2 2 2 2 2 , 2 (0, 1) 60º 45º 90º 30º 180º π/6 3 1 2 , 2 (1, 0) 0º 0 210º 7π/6 330º 270º 300º 315º 225º 240º 3 1 5π/4 , 2 2 4π/3 2 2 2 , 2 1 3 , 2 2 11π/6 7π/4 5π/3 3π/2 (0, -1) 3 1 , 2 2 2 2 , 1 2 3 2 , 2 2 PROPERTIES OF TRIG FUNCTIONS Cosine and secant are even functions cos(-θ) = cos(θ) sec(-θ) = sec(θ) Sine, cosecant, tangent, and cotangent are odd functions sin(-θ) = -sin(θ) csc(-θ) = -csc(θ) tan(-θ) = -tan(θ) cot(-θ) = -cot(θ) Trig functions are periodic sin(θ + 2πn) = sin(θ) cos(θ + 2πn) = cos(θ) tan(θ + πn) = tan(θ) To memorize the unit circle, know your reference angles!!! Ex: Find the 6 trigonometric functions at θ = 2π/3. Reference angle = π/3 1 , 3 2 2 Since 2π/3 is in quadrant II, the x is negative 1 3 , 2 2 Using this coordinate, we can find the 6 trig functions: 1 2 1 2 3 2 1 cos sin sec 1 2 3 2 3 2 3 cos 2 3 3 2 sin 2 1 3 3 2 1 tan cot 1 1 3 cos 3 3 tan 3 2 1 2 2 1 2 3 csc 3 3 3 sin 3 2 7 EVALUATE WITHOUT A CALCULATOR: sin 4 2. 3. 4. 5. 1 3 2 2 2 1 2 2 2 0% 1 1. 0% 0% 0% 0% EVALUATE WITHOUT A CALCULATOR: tan 4 1 2. 3 3 3. 3 4. 2 5. 2 2 0% 1 1. 0% 0% 0% 0% EVALUATE WITHOUT A CALCULATOR: tan 2 1 2. 0 3. 3 3 4. 3 5. undefined 0% 1 1. 0% 0% 0% 0% 5 EVALUATE WITHOUT A CALCULATOR: sec 6 1. 2. 3. 4. 5. 3 2 2 2 3 3 3 2 2 0% 0% 0% 0% 0% 15 EVALUATE WITHOUT A CALCULATOR: cos 4 1. 3 2 2 2 2. 3. 1 2 4. 5. 2 2 3 2 0% 0% 0% 0% 0%