Download Section 4.6

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Section 4.6
The Fundamental Theorem of Algebra
Pairs of complex numbers of the forms
π‘Ž + 𝑏𝑖 and π‘Ž βˆ’ 𝑏𝑖, where 𝑏 β‰  0
Notes:
4. Determine the possible number of positive or negative real zeros, and imaginary
zeros for f(x).
6
2
f ( x) ο€½ 2 x ο€­ 3 x ο€­ x  1
Positive Zeros:
2 sign changes in f(x) , so (2 or 0)
f (ο€­ x) ο€½ 2(ο€­ x)6 ο€­ 3(ο€­ x)2 ο€­ (ο€­ x)  1
ο€½ 2 x 6 ο€­ 3x 2  x  1
Negative Zeros: 2 sign changes in f(-x), so (2 or 0)
Imaginary Zeros:
(2, 4, 6)
𝑦 = (π‘₯ + 4)(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 7)
𝑦 = (π‘₯ + 4)(π‘₯ 2 βˆ’ 8π‘₯ + 7)
𝑦 = (π‘₯ βˆ’ 10)(π‘₯ βˆ’ (βˆ’ 5))(π‘₯ βˆ’ ( 5))
𝑦 = (π‘₯ βˆ’ 10)(π‘₯ + 5)(π‘₯ βˆ’ 5)
𝑦 = π‘₯ 3 βˆ’ 8π‘₯ 2 + 7π‘₯ + 4π‘₯ 2 βˆ’ 32π‘₯ + 28
𝑦 = (π‘₯ βˆ’ 10)(π‘₯ 2 βˆ’ 25)
𝑦 = π‘₯ 3 βˆ’ 4π‘₯ 2 βˆ’ 25π‘₯ + 28
y = (x βˆ’ 10)(π‘₯ 2 βˆ’ 5)
𝑦 = π‘₯ 3 βˆ’ 10π‘₯ 2 βˆ’ 5π‘₯ + 50
𝐴𝑙𝑙 π‘Ÿπ‘Žπ‘‘π‘–π‘π‘Žπ‘™π‘  π‘Žπ‘›π‘‘ π‘–π‘šπ‘Žπ‘”π‘–π‘›π‘Žπ‘Ÿπ‘¦ #β€² 𝑠 β„Žπ‘Žπ‘£π‘’ π‘‘π‘œ β„Žπ‘Žπ‘£π‘’ π‘Ž π‘π‘œπ‘›π‘—π‘’π‘”π‘Žπ‘‘π‘’ π‘π‘’π‘π‘Žπ‘’π‘ π‘’ π‘‘β„Žπ‘’π‘¦
come in pairs
,3 + 𝑖
𝑦 = (π‘₯ βˆ’ 8)(π‘₯ βˆ’ 3 βˆ’ 𝑖 )(π‘₯ βˆ’ 3 + 𝑖 )
𝑦 = (π‘₯ βˆ’ 8)(π‘₯ βˆ’ 3 + 𝑖)(π‘₯ βˆ’ 3 βˆ’ 𝑖)
+𝟏
𝑦 = (π‘₯ βˆ’ 8)(π‘₯ 2 βˆ’ 3π‘₯ βˆ’ ix βˆ’ 3x + 9 + 3i + ix βˆ’ 3i βˆ’ 𝑖 2 )
𝑦 = (π‘₯ βˆ’ 8)(π‘₯ 2 βˆ’ 6x + 10)
𝑦 = π‘₯ 3 βˆ’ 6π‘₯ 2 + 10π‘₯ βˆ’ 8π‘₯ 2 + 48π‘₯ βˆ’ 80
𝑦 = π‘₯ 3 βˆ’ 14π‘₯ 2 + 58π‘₯ βˆ’ 80
See next slide for problem
𝑦 = π‘₯(π‘₯ βˆ’ 2 βˆ’ 2 )(π‘₯ βˆ’ 2 + 2 )(π‘₯ βˆ’ 2 + 3𝑖 )(π‘₯ βˆ’ 2 βˆ’ 3𝑖 )
𝑦 = π‘₯(π‘₯ βˆ’ 2 + 2)(π‘₯ βˆ’ 2 βˆ’ 2)(π‘₯ βˆ’ 2 βˆ’ 3𝑖) (π‘₯ βˆ’ 2 + 3i)
𝑦 = π‘₯(π‘₯ 2 βˆ’ 2π‘₯ βˆ’ π‘₯ 2 βˆ’ 2π‘₯ + 4 + 2 2 + π‘₯ 2 βˆ’ 2 2 βˆ’ 4)(π‘₯ 2 βˆ’ 2π‘₯ + 3𝑖π‘₯ βˆ’ 2π‘₯ + 4 βˆ’ 6𝑖 βˆ’ 3𝑖π‘₯ + 6𝑖 βˆ’ 9𝑖 2 )
𝑦 = π‘₯(π‘₯ 2 βˆ’ 4π‘₯ + 2)(π‘₯ 2 βˆ’ 4π‘₯ + 13)
𝑦 = π‘₯(π‘₯ 4 βˆ’ 8π‘₯ 3 + 31π‘₯ 2 βˆ’ 60π‘₯ + 26)
𝑦 = π‘₯ 5 βˆ’ 8π‘₯ 4 + 31π‘₯ 3 βˆ’ 60π‘₯ 2 + 26π‘₯
A French mathematician Rene’ Descartes found the following relationship between the coefficients of a polynomial function
and the number of positive and negative zeros of the function.
Descartes’ Rule of Signs
Let f(x) =
be a polynomial function with real coefficients.
*The number of positive real zeros of f is equal to the number of changes in sign of
the coefficients of f(x) or is less than this by an even number.
*The number of negative real zeros of f is equal to the number of changes in sign of
the coefficients of f(-x) or is less than this by an even number.
Example:
4. Determine the possible number of positive or negative real zeros, and imaginary
zeros for f(x).
6
2
f ( x) ο€½ 2 x ο€­ 3 x ο€­ x  1
Positive Zeros:
2 sign changes in f(x) , so (2 or 0)
f (ο€­ x) ο€½ 2(ο€­ x)6 ο€­ 3(ο€­ x)2 ο€­ (ο€­ x)  1
ο€½ 2 x 6 ο€­ 3x 2  x  1
Negative Zeros: 2 sign changes in f(-x), so (2 or 0)
Imaginary Zeros:
(2, 4, 6)
Related documents