Download EX - HonorsCalculus

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PRECALCULUS
Polynomial
and
Rational
Functions
Factoring
1. Common Factors: Using the distributive property to
separate common factors.
Ex:
ax  ay  az  a( x  y  z )
2. Difference of squares:
2
2
x

y
 ( x  y )( x  y )
EX:
3. Difference of cubes:
Ex: x3  y3   x  y  ( x 2  xy  y 2 )
4. Sum of cubes:
3
3
2
2
x

y

x

y
(
x

xy

y
)
Ex:


Factoring Continued
5. Perfect Square:
2
2
2
x

2
xy

y

(
x

y
)
Ex:
x 2  2 xy  y 2  ( x  y )2
6. Perfect Cube:
3
2
2
3
3
x

3
x
y

3
xy

y

(
x

y
)
Ex:
x3  3x 2 y  3xy 2  y 3  ( x  y )3
7. Grouping:
Ex: 9 x3  18 x 2  x  2  9 x 2 ( x  1)  1 x  2 
 (9 x 2  1)( x  1)
 (3x  1)(3x  1)( x  1)
8. Binomial Product:
2
2
acx

(
ad

bc
)
xy

bdy
 (ax  by )(cx  dy )
Ex:
Synthetic Division…
NOTE: only works with first degree divisors
1. Solve D(x) =0 for divisor.
2. Place coefficients in descending order with placeholders for
missing terms
3. Place first coefficient on the third line.
2
1
1
3
-12
5
-2
2
10
-4
2
5
-2
1
0
Synthetic Division…
Ex: Divide :
x 4  3 x3  12 x 2  5 x  2
 x3  5 x 2  2 x  1
x2
2 1 3 -12 5 -2
2 10 -4 2
1 5 -2 1 0
Ex:
Divide :
21
x5  3 x 2  1
4
3
2
 x  2 x  4 x  5 x  10 
x2
x2
2
1 0 0 -3 0 1
2 4 8 10 20
1 2 4 5 10 21
Graphing Polynomial Functions
Remainder Theorem: When a polynomial f(x) is divided by x-r,
the remainder is f(r).
Px
R(x)
= Q x +
Dx
Dx
If D(x) = (x-r):
P(x) = Q(x)(x - r) +R
P(r) = Q(r)(r - r) +R
P(r) = Q(r)(0) +R = R
P  x  = Q  x  D  x  +R  x 
Polynomial Theorems
Intermediate Value Theorem: If f is a polynomial
function on [a,b] such that f(a)  f(b), then f(x) takes on
every value between f(a) and f(b) over the interval [a,b].
This theorem allows you to connect the points found by
synthetic division in order to form a smooth curve.
Root Limitation Theorem: A polynomial function P(x) of
degree n has, at most, n distinct zeros.
A root is a solution for an equation. May be real or imaginary.
Zero is a real root for P(x) = 0. An x-intercept
P( x)  x 2  x  2  ( x  2)( x  1)  0
Zeros at 2 and -1
Polynomial Theorems
Factor Theorem: If r is a root of the polynomial equation
P(x), if and only if x-r is a factor of P(x).
Location Theorem: If f(x) is a polynomial function and f(a)
and f(b) are opposite in sign, then there is at least one real zero
between a and b.
Root may be rational or irrational.
Rational Roots Theorem: If P(x) = anxn + ...+a0 has integer
coefficients and p/q is a rational zero, then p is a factor of a0
and q is a factor of an.
(ax  b)(cx  d )  acx 2  (bc  ad )  bd
Possible roots are (b, b/a, b/c, b/ac, d, d/a, d/c, d/ac
1 a, 1/c, and 1/ac)
Test possible roots by synthetic division.
Root Limitation Theorem…
Ex: List all possible rational roots of:
1. x3  x 2  4 x  4  0
p = 1, 2, 4
q = 1
p 1 1 1 1 2 2 2 2 4 4 4 4
: , , , , , , , , , , ,
q 1 1 1 1 1 1 1 1 1 1 1 1
2. 4 x 4  8 x3  43x 2  29 x  60  0
p = 1, 2, 3,  4, 5, 6, 10, 12, 15, 20, 30
q = 1, 2, 4
p/q = (1, 1/2, 1/4, 2, 3, 3/2, 3/4, 4, 5, 5/2, 5/4, 6, 10,
12, 15, 15/2,15/4, 20, 30, 60)
Polynomial Theorems
Upper and Lower Bound Theorem: If a>0 and all numbers
have the same sign then a is an upper bound. If b<0 and the
signs alternate, b is a lower bound
Ex: Solve
2 x 4  5 x3  8 x 2  25 x  10  0
p/q = (1, 1/2, 2, 5, 5/2, 10)
4
3
2
Ex: 4x - 8x - 43x + 29x + 60 = 0
p/q = (1, 1/2, 1/4, 2, 3, 3/2, 3/4, 4, 5, 5/2, 5/4, 6, 10,
12, 15, 15/2,15/4, 20, 30, 60)
4
-8
-43
29
60
-28
97 -456 2340
-5 4
-20
17
-22 126 -3 is a lower bound
-3 4
-2 4
-16
-11
51 -42 root between -2 & -3
-1 4
-12 -31
60
0 -1 is a zero
1 4
-4
-47
-18
2 4
0
-43
-57
4 -31
-64
3 4
4
-15
0
4 4
Solutions: -1, 4, -5/2, 3/2
Factorable quadratic
 2x - 3  2x +5 
Graphing Rational Functions
Asymptote: A line which a graph approaches but never touches.
Types: Vertical
Horizontal: a Limit
Oblique or slant
Vertical asymptote: Located anywhere the x-value makes the
denominator zero
Horizontal Asymptote: for
P( x)
D( x)
If the degree of P(x) is less than D(x) then y=0 is the asymptote.
If the degree of P(x) is equal to D(x), then y equals the ratio of
the lead coefficients is the asymptote.
Slant asymptotes: Degree of P(x) exceeds D(x) by one. Divide and
the quotient without the remainder is the slant
asymptote.
x3  2 x  3
1
3x  8

x

1

2 x2  4 x  1 2
2(2 x 2  4 x  1)
1
The horizontal asymptote is: y  x  1
2
“Hole in the graph”: If there is a common factor in the
numerator and denominator, the function
will not exist at the x which makes the
denominator zero.
1 
Ex: Find: Limit 

x  x  3 
Ans: 0
 2 x 2  3x  5 
Ex: Find: Limit  2

x  x  x  2 
Ans: 2
 x 1 
Limit
Ex: Find:


x1  x 2  1 
Ans: DNE
 x 1 
Limit
Ex: Find: x1  2 
 x 1
Ans: 1/2
Graphing Rational Functions
1. Find asymptotes
2. Find intercepts
3. Does graph cross horizontal asymptote?
4. Check symmetry
5. Graph selected points
Ex: Graph: f ( x) 
2 x2  3x  5
x2  x  2
1. Asymptotes: x = 2, x = -1, and y = 2
2. Intercepts: y-int=-5/2
x-int DNE
3.
2=
2x 2 - 3x + 5
x2 - x - 2
2x 2 - 2x - 4 = 2x 2 - 3x + 5
-2x - 4 = -3x +5
x9
Exponential and Logarithmic Functions
Transcendental Functions: cannot be derived from simple
algebraic functions.
Exponential: function where a finite number is raised
to the power of x.
f(x) = abx
x is the exponent and b is the base
Exponential Property of Equality: If bx = by and b1, x = y.
Rational Exponents:
Rules of exponents:
m
bn
n
1
 
 bm


b0  1
1
n
b  n
b
 
  b

1
n m
n m
 b 
 b
n
m
Graphs of Exponential Functions:
Ex: y = 2x
0
2
1 x


Ex: y =(1/2)










1 10  1
 22  2
 2121  41
2
2
3
2
 1 281
2 1 4
 21 1 12
2
2 2 1
 2  2  4
1
4
2
Ex: f ( x)  10 x
Ex: f ( x)  2 x1
Ex: f ( x)  2 x  1
Ex: f ( x)  2(3 x )  (23 ) x  8 x
Ex: f ( x)  2 x
Ex: f ( x)  2 x
Ex: f ( x)  2
 x2
Logarithmic Functions
y=2x and y=log2 x
Ex: Graph y  log6 x
6y  x
log 6 y  log x
y log 6  log x
y
log x log x

log 6 .7782
Ex: Graph y  log 6 ( x  2)
Ex: Graph y  log 6 ( x)  2
Ex: Graph
y  log6 (2 x)
Ex: Graph
y  log6 (2 x)
Ex: Graph y  2log6 ( x)
Ex: Graph y   log3 (3x  4)  2
y   log 3 (3 x  4)  2
y  2   log 3 (3 x  4)
2  y  log 3 (3 x  4)
32 y  ( 3 x  4)
log 32 y  log( 3 x  4)
log( 3 x  4)
log 3
log( 3 x  4)
y  2
log 3
2 y 
y  log3  3x 
y  log3  3x  4 
 log3  3( x  43 )
y   log3  3x  4 
y   log3  3x  4   2
y  log3  3x 
y  log3  3x  4 
 log3  3( x  43 )
y  log3  3x  4 
 log3  3( x  43 )
y   log3  3x  4 
y   log3  3x  4 
y   log3  3x  4   2
Related documents