Download R.5 - Gordon State College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Sullivan Algebra and
Trigonometry: Section R.5
Factoring
Objectives of this Section
• Factor the Difference of Two Squares
• Factor the Sum and Difference of Two Cubes
• Factor Second Degree Polynomials
• Factor By Grouping
The process of expressing a polynomial
as a product of other polynomials is
called factoring.
Example
Multiply: 3 x (x - 2 x - 4)
2
= 3 x ( x 2 ) - 3 x (2 x) - 3 x(4)
= 3 x 3 - 6 x 2 - 12 x
Factoring is the same process in reverse
3
2
Factor: 3 x - 6 x - 12 x
Notice that each term in this trinomial has
a greatest common factor of 3x.
3
2
3 x - 6 x - 12 x
= 3 x( x 2 ) - 3 x(2 x) - 3 x(4)
= 3 x (x 2 - 2 x - 4)
Special Formulas
When you factor a polynomial, first check
whether you can use one of the special
formulas shown in the previous section.
Difference of Two Squares: x 2 - a 2 = ( x - a )( x + a )
Perfect Squares:
2
x 2 + 2ax + a 2 = (x + a )
2
x 2 - 2ax + a 2 = (x - a )
Sum of Two Cubes: x3 + a 3 = (x + a )(x 2 - ax + a 2 )
3
3
2
2
x
a
=
x
a
x
+
ax
+
a
(
)
(
)
Difference of Two Cubes:
Example:
Factor Completely: 9 x 2 - 64
9 x  64   3 x   8
2
2
2
  3 x  8 3 x  8
Factor Completely: x 4  1
x  1   x  1  x  1
4
2

x
2
2
1
 x  1 x  1
Factor the trinomial: x 2  11x  18
Look for factors of 18 whose sum is 11.
9  2  18
9  2  11
x  11x  18   x  2  x  9 
2
Factor the trinomial: x  3x  10
2
Factors of -10
10, -1
Sum
9
5, -2
3
-5, 2
-3
-10, 1
-9
x  3 x  10   x  5 x  2 
2
Factor completely: 3x  7 x  6
2
3x  7 x  6   3x
2
 3 x
 3 x

2
3x  7 x  6  
3
x


 3x
 x

1 x 6
6 x 1
2 x 3
3 x
2
 3x + 1 x  6
 3x  1 x  6

 3x  6 x  1

 3x  6 x  1
2
3x  7 x  6  
 3x  2 x  3
 3x  2 x  3

 3x  3 x  2
 3x  3 x  2
Factor By Grouping:
2 x  10x  3x  15
3
2


 2 x  10 x  3x  15
3
2
 2 x  x  5  3 x  5
2


  x  5 2 x  3
2
Related documents