Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Further Pure 1 Lesson 10 – Roots of Equations Properties of the roots of cubic equations Wiltshire Cubic equations have roots α, β, γ (gamma) az3 + bz2 + cz + d = 0 a(z – α)(z – β)(z – γ) = 0 a=0 This gives the identity az3 + bz2 + cz + d = a(z - α)(z - β)(z – γ) Multiplying out az3 + bz2 + cz + d = a(z – α)(z – β)(z – γ) = a(z2 – αz – βz + αβ)(z – γ) z2 -αz -βz αβ z z3 -αz2 -βz2 αβz -γ -γz2 γαz βzγ -αβγ = az3 – a(α + β + γ)z2 + a(αβ + αγ + βγ)z - aαβγ Properties of the roots of cubic equations Equating coefficients -a(α + β + γ) = b α + β + γ = -b/a a(αβ + αγ + βγ) = c αβ + αγ + βγ = c/a -aαβγ = d αβγ = -d/a Can you notice a pattern? Wiltshire Properties of the roots of quartic equations Wiltshire Quartic equations have roots α, β, γ, δ (delta) az4 + bz3 + cz2 + dz + e = 0 a(z – α)(z – β)(z – γ)(z – δ) = 0 a=0 This gives the identity az4 + bz3 + cz2 + dz + e = a(z - α)(z - β)(z – γ)(z – δ) Multiplying out (try this yourself) az4 + bz3 + cz2 + dz + e = a(z – α)(z – β)(z – γ)(z – δ) = a(z2 – αz – βz + αβ)(z2 – γz – δz + γδ) z2 -γz -δz γδ z2 z4 -γz3 -δz3 γδz2 -αz -αz3 αγz2 αδz2 -αγδz -βz -βz3 βγz2 βδz2 -βγδz αβ αβz2 -αβγz -αβδz αβγδ Properties of the roots of quartic equations Wiltshire = z4 – αz3 – βz3 – γz3 – δz3 + αβz2 + αγz2 + βγz2 + αδz2 + βδz2 + γδz2 – αβγz – αβδz – αγδz – βγδz + αβγδ = z4 – (α + β + γ + δ)z3 + (αβ + αγ + βγ + αδ + βδ + γδ)z2 – (αβγ + αβδ + αγδ + βγδ)z + αβγδ z2 -αz -βz αβ z2 -γz z4 -γz3 -αz3 αγz2 -βz3 βγz2 αβz2 -αβγz -δz γδ -δz3 γδz2 αδz2 -αγδz βδz2 -βγδz -αβδz αβγδ Properties of the roots of quartic equations Wiltshire Remember the a = a[z4 – (α + β + γ + δ)z3 + (αβ + αγ + βγ + αδ + βδ + γδ)z2 – (αβγ + αβδ + αγδ + βγδ)z + αβγδ] = az4 – a(α + β + γ + δ)z3 + a(αβ + αγ + βγ + αδ + βδ + γδ)z2 – a(αβγ + αβδ + αγδ + βγδ)z + aαβγδ Equating coefficients -a(α + β + γ + δ) = b α + β + γ + δ = -b/a = Σα a(αβ + αγ + βγ + αδ + βδ + γδ) = c αβ + αγ + βγ + αδ + βδ + γδ = c/a = Σαβ -a(αβγ + αβδ + αγδ + βγδ) = d αβγ + αβδ + αγδ + βγδ = -d/a = Σαβγ aαβγδ = e αβγδ = e/a Example 1 Wiltshire The roots of the equation 2z3 – 9z2 – 27z + 54 = 0 form a geometric progression. Find the values of the roots. Remember that an geometric series goes a, ar, ar2, ……….., ar(n-1) So from this we get α = a, β = ar, γ = ar2 2 = 9/2 α + β + γ = -b/a a + ar + ar (1) αβ + αγ + βγ = c/a a2r + a2r2 + a2r3 =-27/2 (2) 3 3 αβγ = -d/a (3) a r = -27 We can now solve these simultaneous equations. Example 1 Wiltshire Starting with the product of the roots equation (3). a3r3 = -27 (ar)3 = -27 ar = -3 Now plug this into equation (1) a + ar + ar2 = 9/2 (-3/r) + -3 + (-3/r)r2 = 9/2 (-3/r) + -15/2 + -3r = 0 (-9/2) -6 -15r – 6r2 = 0 (×2r) 2r2 + 5r + 2 = 0 (÷-3) (2r + 1)(r + 2) = 0 r = -0.5 & -2 This gives us the arithmetic series 6, -3, 1.5 or 1.5, -3, 6 Example 1 – Alternative Algebra Wiltshire 2z3 – 9z2 – 27z + 54 = 0 This time because we know that we are going to use the product of the roots we could have the first 3 terms of the series as a/r, a, ar So from this we get α = a/r, β = a, γ = ar α + β + γ = -b/a a/r + a + ar = 9/2 (1) We have ignored equation 2 because it did not help last time. αβγ = -d/a a3 = -27 (3) We can now solve these simultaneous equations. Example 1 – Alternative Algebra Wiltshire Starting with the product of the roots equation (3). a3 = -27 a = -3 Now plug this into equation (1) a/r + a + ar = 9/2 -3/r + -3 + -3r = 9/2 (-3/r) + -15/2 + -3r = 0 (-9/2) -6 -15r – 6r2 = 0 (×2r) 2r2 + 5r + 2 = 0 (÷-3) (2r + 1)(r + 2) = 0 r = -0.5 & -2 This gives us the arithmetic series 6, -3, 1.5 or 1.5, -3, 6 Example 2 The roots of the quartic equation Wiltshire 4z4 + pz3 + qz2 - z + 3 = 0 are α, -α, α + λ, α – λ where α & λ are real numbers. i) Express p & q in terms of α & λ. α + β + γ + δ = -b/a α + (-α) + (α + λ) + (α – λ) = -p/4 2α = -p/4 p = -8α αβ + αγ + αδ + βγ + βδ + γδ = c/a (α)(-α) + α(α + λ) + α(α - λ) + (-α)(α + λ) + (-α)(α - λ) + (α + λ)(α – λ) = q/4 -α2 + α2 + αλ + α2 – αλ – α2 – αλ – α2 + αλ + α2 – λ2 = q/4 – λ2 = q/4 q = -4λ2 Properties of the roots of quintic equations Wiltshire This is only extension but what would be the properties of the roots of a quintic equation? az5 + bz4 + cz3 + dz2 + ez + f = 0 The sum of the roots = -b/a The sum of the product of roots in pairs = c/a The sum of the product of roots in threes = -d/a The sum of the product of roots in fours = e/a The product of the roots = -f/a Now do Ex 4c pg 110, Ex 4d pg 113