Download Power Point

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Fluids and Elasticity
Readings: Chapter 15
1
Solid, Liquid, Gas
-Solid has well-defined shape and well-defined surface.
Solid is (nearly) incompressible. Specific positions of
the molecules
-Liquid has well-defined surface (nor shape), It is
(nearly) incompressible.
- Gases are compressible. They occupy all the volume.
2
Liquid, Gas: Density
-Density is defined as a ratio of the mass of the object
and occupied volume
m

V
The mass of unit volume (1m x 1m x 1m)
Units: kg / m 3
 air
air
m

V
kg
1 3
m
 liquid
 liquid
m

V
kg
1000 3
m
V
 air   liquid
3
Liquid, Gas: Pressure
The force will be distributed over the area A,
F
We can define the force per unit area pressure
F
p
A
If we place some object inside liquid (gas) then there will be normal force
acting on the object
F
The force will depend on the area. We can
define pressure. The pressure will be the same
for all orientation of the object.
F
F
F
p
A
F
4
F
p
A
Liquid, Gas: Pressure
Pressure is a SCALAR. The force due to pressure
will be perpendicular to the surface.
Units: Pascal (Pa)
Pa 
N
m2
Origin of pressure:
1. Gravitational – in liquid - as gravity pull down
the liquid exerts a force on the bottom and
sides.
2. Thermal motion – in gasses – motion of atoms
(molecules) results in collision with the walls.
Atmospheric pressure – 1atm = 101300 Pa
5
Liquid: Pressure
Fnet  0
p0 A  w  pA
w  mg   Adg
w
Then
p0 A   Adg  pA
p  p0   dg
Hydrostatic pressure at depth d
6
Liquid: Pressure
Example: What is the hydrostatic pressure of water at depth 10 m, 100 m,
1000 m
p  p0   dg
  1000kg / m 3
p0  patm  105 Pa
p10  p0   dg  105  1000  10  10  2  105  2 patm
p100  p0   dg  105  1000  100  10  11  105  11 patm
p1000  p0   dg  105  1000  1000  10  101  105  101 patm
7
Pressure at point A is the same as the pressure at point B – atmospheric
pressure,
p0
Pressure at point 1 is
p1  p0   hg
Pressure at point 2 is
p2  p0   hg
B
A
h
h
8
Liquid: Buoyancy force: Archimede’s principle
p2  p0   h1 g
Fnet  F1  F2
y
h1
F1
Fnet , y  F2  F1
h2
F1  p1 A  ( p0   liquid gh1 ) A
F2
p2  p0   h2 g
F2  p2 A  ( p0   liquid gh2 ) A
Fnet , y  ( p0   liquid gh2 ) A  ( p0   liquid gh1 ) A 
  liquid g( h2  h1 ) A   liquidVg
FB   liquidVg
Archimede’s principle
9
Liquid: Buoyancy force: Archimede’s principle
FB   liquidVg
10
Liquid: Buoyancy force: Archimede’s principle
FB   liquidVg
w  mobject g   objectVg
w  FB
w  FB
 object   liquid
Object sinks
 object   liquid
Object floats
w  FB
 object   liquid
Equilibrium
11
Liquid: Fluid Dynamics: Equation of Continuity
Ideal-fluid model:
1. Liquid is incompressible
2. Liquid is nonviscous (no friction)
3. Flow is steady
Liquid is incompressible: Equation of Continuity
v1 A1t
A1
v1
v1 A1  v2 A2
v2 A2 t
A2
v2
The same volume of fluid crosses both planes
12
Liquid: Fluid Dynamics: Bernoulli’s Equation
No friction: conservation of energy
1 2
1 2
p1   v1   gh1  p2   v2   gh2
2
2
A1
A2
v1
v2
v1 A1  v2 A2
13
Example: find v-?
A
At point A:
pA  p0
vA  0
v
hA  h
B
At point B:
pB  p0
vB  v
hB  y
1 2
1 2
pA   v A   ghA  pB   vB   ghB
2
2
1 2
v  2 g( h  y )
 gh   v   gy
2
14
Example: find p at point B
B
C
v1 A1  v2 A2
1 2
p1   v1   gh1 
2
1 2
 p2   v 2   gh2
2
Water
Continuity equation:
Bernoulli’s equation:
hB  10m
hc  0
  1000kg / m 3
vC AC  vB AB
1 2
1 2
pC   vC   ghC  pB   vB   ghB
2
2
1
pB  pC   (vC2  vB2 )   ghB  102500 Pa
2
15
Related documents