Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Communication Systems Prof. Kuo, Chungming Chapter 1 Decibel Computations (cont.) Decibel Computations Widely employed in the communications industry. Decibel forms are vital to understanding the many system specifications and performance standards. Arguably not as essential today, but the practice of utilizing decibel forms is so widespread that the tradition will likely continue. Decibel Computations (cont.) This module covers basic decibel definitions and how they are applied in systems analysis. Important Logarithmic Identities 1 log log x x log x k k log x log xy log x log y x log log x log y y Block Diagram for Defining Gain I1 I2 G V1 P1 or P2 V2 GdB R Power Gain Definitions • Absolute Power Gain: P2 G P1 • Decibel Power Gain: P2 GdB 10 logG 10 log P1 Power Loss Definitions • Absolute Power Loss: P1 1 L P2 G • Decibel Power Loss: P1 LdB 10 log L 10 log P 2 • Note: LdB GdB Useful Decibel Patterns Absolute Absolute Gain Loss Decibel Gain Decibel Loss >1 <1 + - <1 >1 - + 1 1 0 0 Conversion from Decibel Gain to Absolute Gain • Start with: • Divide both sidesby 10 GdB 10 log G GdB log G 10 Conversion from Decibel Gain to Absolute Gain (cont.) • Raise both sides to power of 10 G 10 • By a similar approach L 10 LdB 10 G dB 10 Decibel Voltage and Current Forms • Assume a resistance R at both input and output 2 2 2 1 V GdB 10 log V 2 V2 R V2 10 log 20 log R V1 V1 Let V2 V1 voltage gain Av Decibel Voltage and Current Forms (cont.) • Assume a resistance R at both input and output GdB 20log Av Av 10 G dB 20 Let I 2 I1 current gain Ai GdB 20log Ai Ai 10 G dB 20 Some Common Decibel Values Power Ratio 2 4 8 10 100 10n 102n 1/2 = 0.5 1/4 = 0.25 1/8 = 0.125 1/10 = 0.1 1/100 = 0.01 1/10n = 10-n 1/102n = 10-2n Voltage or Current Ratio 2 = 1.414 2 22 = 2.828 10 = 3.162 10 10n/2 10n 1/2 = 0.7071 1/2 = 0.5 1/(22) = 0.3536 1/10 = 0.3162 1/10 = 0.1 1/10n/2 = 10-n/2 1/10n = 10-n Decibel Values 3 dB 6 dB 9 dB 10 dB 20 dB 10n dB 20n dB -3 dB -6 dB -9 dB -10 dB -20 dB -10n dB -20n dB Some Common Decibel Values (cont.) • Example 1: An amplifier has an absolute power gain of 175. Determine the decibel gain. GdB 10 log G 10 log175 10 2.243 22.43 dB Some Common Decibel Values (cont.) • Example 2: An amplifier gain is given as 28 dB. Determine the absolute power gain. GdB 10 log G 28 10 logG 2.8 logG G 10 2.8 631.0 Some Common Decibel Values (cont.) • Example 3: Assuming equal input and output determine the voltage gain in resistances, Av G 631.0 25.12 Some Common Decibel Values (cont.) • Example 4: In a lossy line, only 28% of the input power reaches the load. Determine the decibel gain and loss. P2 GdB 10 log 10 log 0.28 10 0.5528 P1 LdB GdB 5.528 5.528 dB 5.528 dB Decibel Reference Levels In its basic form, the decibel involves a logarithmic ratio and is dimensionless. However, there are various portions of the industry that have adopted decibel measures relative to some standard reference level. All of these forms have some modifier attached to the unit; e.g., dBm, dBf, etc. Typical Decibel Reference Levels power level (W) power level (dBW) 10 log 1W power level (mW) power level (dBm) 10 log 1 mW power level (fW) power level (dBf) 10 log 1 fW Conversion Between Decibel Signal Levels Level in dBm = Level in dBW + 30 Level in dBf = Level in dBW + 150 Level in dBf = Level in dBm + 120 Example 5 • A signal has a power level of 100 mW. • Express the level in dBm, dBW, and dBf. P(mW) 100 mW P(dBm) 10log 10log 20 dBm 1 mW 1 mW P(W) 0.1 W P(dBW) 10log 10log 10 dBW 1W 1W P(fW) 1014 fW P(dBf) 10log 10log 140 dBf 1 fW 1 fW Decibel Gain Combined with Decibel Signal Levels PO GPS • Divide both sides by the same reference level, take logs of both sides, multiply by 10, and expand. The quantity x below represents any reference standard; e.g., m. PO dBx PS dBx GdB Cascade System G1 G2 G3 Gn or or or or G1dB G2dB G3dB GndB • It is assumed that impedance (resistance) levels are matched at all junctions. Cascade Decibel Gain Analysis G G1G2G3 Gn • Take logs of both sides, expand, and multiply by 10. Apply dB forms to all terms. GdB G1dB G2dB G3dB GndB Example 6 • For system below, determine (a) system absolute gain, (b) system decibel gain from (a), and (c) system decibel gain from individual stages. L G1 G1 5000 G1dB 37 dB G2 L 2000 G2 400 LdB 33 dB G2dB 26 dB Example 6 (cont.) (a) 1 1 G G1 G2 5000 400 1000 L 2000 (b) G dB 10 log1000 10 3 30 dB Example 6 (cont.) (c) G1dB 10 logG1 10 log 5000 10 3.7 37 dB LdB 10 log L 10 log 2000 10 3.3 33 dB G2dB 10 logG2 10 log 400 10 2.6 26 dB GdB G1dB LdB G2dB 37 33 26 30 dB Example 7 • The source below is connected to the system of Example 6. Find (a) power levels in watts at all junctions and (b) corresponding dBm levels. Ps 0.1 mW Ps (dBm) 10 dBm G1 P1 G1 5000 G1dB 37 dB L P2 G2 L 2000 G2 400 LdB 33 dB G2dB 26 dB Po Example 7 (cont.) (a) P1 G1 PS 5000 0.1 mW 500 mW 0.5 W P1 500 mW P1 0.25 mW L 2000 PO G2 P2 400 0.25 mW 100 mW Example 7 (cont.) (b) PS (mW) PS (dBm) 10 log 10 dBm 1 mW P1 (dBm) PS (dBm) G1dB 10 37 27 dBm P2 (dBm) P1 (dBm) LdB 27 33 6 dBm PO (dBm) P2 (dBm) G2dB 6 26 20 dBm Example 8 • For the system below, determine power and voltage levels at each point and the required gain of the output receiving amplifier based on 75- matching at all junctions. CABLE SIGNAL LINE SOURCE AMPLIFIER SECTION A 10 dBm OUTPUT 13 dB GAIN 26 dB LOSS CABLE BOOSTER AMPLIFIER SECTION B 20 dB GAIN 29 dB LOSS OUTPUT AMPLIFIER 6V GrdB ? 75 W Data for Example 8 Gain Signal Source Line Amplifier Cable Section A Booster Amplifier Cable Section B Output Level 10 dBm Voltage 0.8660 V 13 dB 23 dBm 3.868 V -26 dB -3 dBm 0.1939 V 20 dB 17 dBm 1.939 V -29 dB -12 dBm 68.79 mV Example 8: Computations P(mW) P(W) P(dBm) 10 log 10 log 3 1 mW 110 W P(W) 1103 10 P (dBm) 10 V2 V2 P or V 75P R 75 2 6 P0 480 mW 75 Example 8: Computations (cont.) 480 mW P0 (dBm) 10 log 26.81 dBm 1 mW GrdB 26.81 dBm 12 dBm 38.81 dB Alternately, 6V Av 87.22 3 68.79 10 V GrdB 20 log 87.22 38.81 dB Decibel Signal-to-Noise Ratios • P = average signal power in watts • N = average noise power in watts P S N N S N dB 10 logS N S N dB P(dBx) N (dBx) Example 9 • At a given point, signal power is 5 mW and noise power is 100 nW. Determine absolute and dB S/N ratios. 4 S N 10 log S N 10 log 5 10 47 dB dB 5 mW 4 5 10 S N 4 10 mW Example 9 (cont.) • At a given point, signal power is 5 mW and noise power is 100 nW. Determine absolute and dB S/N ratios. • Alternately, P(dBm) 7 dBm N(dBm) 40 dBm S N dB P(dBm) N(dBm) 7 40 47 dB Summary A decibel is not an absolute unit, but is based on a logarithmic power ratio. Decibel measures are widely employed throughout the electronics industry, but especially in the communications area. Summary (cont.) Decibel level units are based on a standard reference and dB is always accompanied by a modifier in that case, namely, dBm. The decibel gain of a complete system is the sum of the individual dB gains. A decibel level output is the sum of the decibel level input and the decibel gain.