Download Multiplying Polynomials

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
5.5
1.
2.
3.
4.
Multiplying Polynomials; Special
Products
Multiply a polynomial by a monomial.
Multiply binomials.
Multiply polynomials.
Determine the product when given special polynomial
factors.
Objective 1
Multiply a polynomial by a monomial.
Multiply.
2 p  6 p 2  2 p  1
2p
6 p
2
 2 p  1
2p • 6p2
2p • 2p
2p • –1
2p ∙ 6p2 + 2p ∙ 2p + 2p ∙ – 1
 12 p3  4 p 2  2 p
2 p  6 p  2 p  1  12 p  4 p  2 p
2
3
2
Multiplying a Polynomial by a Monomial
Use the distributive property to multiply each
term in the polynomial by the monomial.
Multiply:

2
5a 2a  a  6

10a3  5a2  30a
When
2a anbequation
ab issolved
5athe answer
 4bc
 3a inbonevariable

is a point on a line
2
3
3
4
.
 6a 5b2  2a3b4  10a6 b  8a2b2c
2 4
1 3 1 2
1

5r  r 
r  r 
r  1
20
5
10


1 5
1 3
4
5r  r  r  r  5r 2
4
2
6
Objective 2
Multiply binomials.
Multiply.
 x  7  x  3
x•3
 x  7
x•x
 x  3
7•x
7•3
 x  x  x 3 7 x  73
= x 2  3x  7 x  21
= x 2  10 x  21
 x  7  x  3 = x 2  10 x  21
Multiplying Polynomials
1. Multiply every term in the second polynomial by
every term in the first polynomial.
2. Combine like terms.
Multiply.
 2x  1 x  5
FOIL: First Outside Inside Last
 2x  1
2x • (–5)
Outside
2x • x
First
1•x
Inside
 x  5
1 • (–5)
Last
Last
First
Outside Inside
 2x  x  2 x   5  1  x  1   5
 2 x 2  10 x  x
 2x2
 9x
 2 x2  9 x  5
5
5
Multiply:
a  4a  9
2
a  13a  36
n  7n  5
n2  2n  35
When an equation in one variable is solved the answer is a point on a line.
3x  5 2 x  7 
2
6x  11x  35
2t  73t  1
6t 2  23t  7
The product of two binomials can be
shown in terms of geometry.
x
7
x
x2
7x
5
5x
35
Length • width = Sum of the areas of the
four internal rectangles
 x  7  x  5
 x 2  5 x  7 x  35
 x 2  12 x  35
Combine like
terms.
Objective 3
Multiply polynomials.
Multiply.  x  3  2 x 2  3x  3
x • 3x
x • 2x2
 x  3
Horizontal Multiplication
x•3
2
2
x
  3 x  3
(–3) • 2x2
(–3) • 3x
(–3) • 3
2
 x  2x2  x  3x  x  3   3  2 x   3  3x   3  3
 2x3
 3x 2
 3x
 2x3  3x 2  6 x  9
 6 x2
 9x
9
Multiply.  x  3  2 x 2  3x  3
Vertical Multiplication
2 x 2  3x  3
x3
2
 6x  9x  9
2
3
 2x  3x  3x
2x
3
 3x  6x  9
2
Multiply:
x  3x2
 3x  2

x 3  3x 2  2 x
 3x 2  9 x  6
x3
 7x  6
When an equation in one variable is solved the answer is a point on a line.
2f

 3g 2f  3fg  9g
2
2

3
2
4 f  27 fg  27g
3
Objective 4
Determine the product when given
special polynomial factors.
Multiply:
a  4a  4
2
a  16
n  5n  5
n2  25
When an equation in one variable is solved the answer is a point on a line.
2t  72t  7
4t 2  49
4b  5c 4b  5c 
16b2  25c 2
Conjugates: Binomials that differ only in the sign
separating the terms.
x + 9 and x – 9
2x + 3 and 2x – 3
–6x + 5 and –6x – 5
Multiplying Conjugates
If a and b are real numbers, variables, or
expressions, then (a + b)(a – b) = a2 – b2.
Multiply:
a  4a  4
n  5n  5
a2  8a  16
n2  10n  25
2 ∙ 4a
2∙–5n
2

a  4
nis apoint5on a line
When an equation in one variable is solved the answer
2
.
2t  72t  7
4b  5c 4b  5c 
4t 2  28t  49
16b2  40bc  25c 2
2t  72
4b  5c 2
Squaring a Binomial
If a and b are real numbers, variables, or
expressions, then
(a + b)2 = a2 + 2ab + b2
(a – b)2 = a2 – 2ab + b2
Remember the shortcut
or
rewrite and foil !!
Multiply:
9k  22
y  52
y 2  10y  25
81k 2  36k  4
When an equation in one variable is solved the answer is a point on a line.
4 t  1
2
16t 2  8t  1
6  7c 
2
36  84c  49c 2
Multiply.  2 y  5 y  3
a) 2 y 2  y  15
b) 2 y  2 y  15
2
c) 2 y 2  y  15
d) 2 y 2  11y  15
5.5
Copyright © 2011 Pearson Education, Inc.
Slide 5- 22
Multiply.  2 y  5 y  3
a) 2 y 2  y  15
b) 2 y  2 y  15
2
c) 2 y 2  y  15
d) 2 y 2  11y  15
5.5
Copyright © 2011 Pearson Education, Inc.
Slide 5- 23
Multiply.  5 x  4 
2
a) 25 x 2  40 x  8
b) 25 x 2  20 x  8
c) 25 x 2  20 x  16
d) 25 x 2  40 x  16
5.5
Copyright © 2011 Pearson Education, Inc.
Slide 5- 24
Multiply.  5 x  4 
2
a) 25 x 2  40 x  8
b) 25 x 2  20 x  8
c) 25 x 2  20 x  16
d) 25 x 2  40 x  16
5.5
Copyright © 2011 Pearson Education, Inc.
Slide 5- 25
Related documents