Download 2 - Northumbria University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Simulation of All-optical Packet Routing
employing PPM-based Header Processing in
Photonic Packet Switched Core Network
H. Le Minh, Z. Ghassemlooy and Wai Pang Ng
Optical Communications Research Group
Northumbria University, UK
http://soe.unn.ac.uk/ocr/
First International Conference on Communications and Electronics
HUT - ICCE 2006, 10th-11th Oct. 2006 Hanoi, Vietnam
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation principle
Clock extraction
PPM address conversion
PPM header correlation
All-optical flip-flop
Wavelength conversion

Simulation Results

Summary
HUT - ICCE 2006
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Introduction – All-optical network
…
0111
#7
110
#12
…
#9
61
1001
…
#10
#15
1010
1111
#8
1000
Edge node
…
Core router
Core network
#11
…
1011
High-speed
optical data packet
Low-speed
electrical data packet
Network transparency  All-optical core router
 Processing, switching and routing in optical domain  high throughput
 Packet format is preserved
HUT - ICCE 2006
1
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Routing Table
i
4-bit
?
OP 1
OP 2
1001B = 9D
OP 3
Convert to
pulse-position
routing table
Ref: [1] Z. Ghassemlooy et al., NOC 2005, UK, pp. 209-216
HUT - ICCE 2006
[2] Z. Ghassemlooy et al., ICTON 2005, Spain, Vol. 2, pp. 50-53
2
Router Operation
Principle
Implementation
OP 1
4-bit
PK1@1
PPM-HP 1 @1
PK2@2
c1
PK3@3
...
OP 2
…
E1 E2 E3 EM
…
M 321
WDM
DEMUX
Input
port
…
c2
…
EM E1 E2 EM-1
…
OP 3
cM
E2 E3 E4 E1
E1 E2 E3 EM
c1
c2
WDM
MUX
cM
MWPPRT
…
…
1
PK3@3
WDM
MUX
Output 1
PK1@2
WDM
MUX
PKM@1
M
Output
2
...
…
M 321
M
1
…
M-1
…
PPM-HP M @M
…
2
3
…
PPM-HP 2 @2
PKM@M
1
2
…
M
…
WDM
MUX
Output M
…
M 321
M 321
…
CW
1M router
(up to M input packets at M wavelengths)
HUT - ICCE 2006
3
Router - PPM-HP
Outputs
Data packet, @1
Data
1
WC-1
H Clk
Data
@2
H Clk
…
…
Input
Da
ta
Data
Clk
cSP
H Ck
2
…
M
WC-M
H Ck
xPPM(t)
1-N SP
Converter
H
Clk
Data
WC-2
PPM-ACM
PPM-HEM
Clock
Extraction
1
AOFF
1
2
AOFF
2
x(t)
&
CW
…
&
…
AOFF
M
M
&
BPF BPF
1
1
ci
E1
E2
BPF
1
Address matches with entry 2
EM
PPM-HP module
HUT - ICCE 2006
4
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Router - PPM-HP - Clock Extraction
Payload
Header
Clk
Clk
Clock Extraction
1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1
1
Clock, header and payload:- have the same intensity, polarization and wavelength
Clock extraction requirements:
• Asynchronous and ultrafast response
• High on/off contrast ratio of extracted clock
HUT - ICCE 2006
5
Router - PPM-HP - Clock Extraction
CP1
Clk
GCP
12
12
SOA1
SOA1

22
12
in
SMZ-1
22
22
22
SW
12
22
in
SW
SOA2
SMZ-2
22
22
22
SOA2
CP2
Optical fiber span
HUT - ICCE 2006
Amplifier
Polarization Controller
(PC)
Polarization Beam Splitter
(PBS)
Attenuator
Optical delay
6
Router - PPM-HP - Clock Extraction
GCP
12
12
SOA1
SOA1

22
12
in
SMZ-1
22
22
SW
Optical fiber span
HUT - ICCE 2006
22
Amplifier
12
22
in
SW
SOA2
Polarization Controller
(PC)
Polarization Beam Splitter
(PBS)
SMZ-2
22
22
22
Attenuator
SOA2
Optical delay
6
Router - PPM-HP - Clock Extraction
Clk
GCP
12
12
SOA1
SOA1

22
12
in
SMZ-1
22
22
SW
Optical fiber span
HUT - ICCE 2006
22
Amplifier
12
22
in
SW
SOA2
Polarization Controller
(PC)
Polarization Beam Splitter
(PBS)
SMZ-2
22
22
22
Attenuator
SOA2
Optical delay
6
Router - PPM-HP - Clock Extraction
(a)
Input packets
(b)
Extracted clock pulse by single SMZ. The
residual signal intensities are high, but
eventually fading due to SOA gain is saturated
with the stream of high-powered control pulses
(c)
Extracted clock pulse by two-inline SMZs. The
residual signals are suppressed  improving
the on/off contrast ratio
(a)
(b)
HUT - ICCE 2006
(c)
Ref: Z. Ghassemlooy et al., ICTON 2006, UK, Vol. 4, pp. 64-67
7
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Router - PPM-HP - Address Conversion

a0 a1 a2 a3
(a)
1-N SP Converter
SMZ3
SMZ2
SMZ1
SMZ0
a3
))a2
a1
a0
(b)
cSP
2 TS
0
x(t)
Switch
(0)
s
1
2 TS
2
2 TS
1
Switch
(1)
1
Switch
(2)
1
2 TS
3
xPPM(t)
Switch
(3)
PPM-ACM
(a)
HUT - ICCE 2006
(b)
8
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Router - PPM-HP - Header Correlation
Matched
xPPM(t)
E2(t)
c
…
…
2N×M
switch
matrix
…
N
E1
E2
EM
12
(Optionally) Could be
changed to set new
values of entries


SMZ-based AND gate: only one bit-wise operation!
SOA gain recovery is no longer an issue, since it is saturated only once for
header recognition
Ref: R. P. Schreieck et al., IEEE Quantum Elec., Vol. 38, pp. 1053-1061, 2002
HUT - ICCE 2006
9
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Router - PPM-HP - All-optical Flip-Flop
TSW
TFBL
St
SET
FBL
PFBL
SOA1
CW
PCW
Q
SOA2
:(1 –)
Polarization
Controller (PC)
Attenuator
RESET
Rt
TFBL
Polarization Beam
Splitter (PBS)
AOFF
Optical delay
- Operate at < nanoseconds responses
- Multiple SET/RESET pulses for compensating the actual loop delay (~ hundreds
of picoseconds) and for speeding up the transient ON/OFF states of Q output
HUT - ICCE 2006
10
Router - PPM-HP - All-optical Flip-Flop
SET (blue) / RESET (red)
SOA1 gain (blue) / SOA2 gain (red)
HUT - ICCE 2006
Q output
ON/OFF Contrast Ratio
11
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Router - PPM-HP - Wavelength Conversion
Data packet
@ 1
Data packet
@ 2
SOA1
CW @ 2
22
22
SOA2
Ref: Y. Ueno et al., ECOC 2002
HUT - ICCE 2006
12
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Simulation – 13 Router
OP 1
4-bit
OP 2
OP 3
HUT - ICCE 2006
13
Simulation – Parameters
HUT - ICCE 2006
14
Simulation – Input / Clock Extraction
1
Clk 1
2
3
Input packets (3 wavelengths)
HUT - ICCE 2006
Clk 2
Clk 3
Input spectrum / Extracted clock pulses
14
Simulation – Router Outputs
PPM-HP1 – Output 1
3
2
1
PPM-HP2 – Output 2
PPM-HP3 – Output 3
Router output 1
HUT - ICCE 2006
Spectrum at router output 1
15
Simulation – Router Outputs
PPM-HP1 – Output 2
PPM-HP2 – Output 3
PPM-HP2 – Output 1
PPM-HP3 – Output 1
PPM-HP3 – Output 2
Router output 2
HUT - ICCE 2006
PPM-HP1 – Output 3
Router output 3
16
Simulation – Multiple-hop OSNR
1- Multiple-hop OSNR due to accumulated ASE
OSNR1
OSNR0
Source
Edge-node
# Source
G1 Pase,1
Pin
G0 1 L0
Pase, 0
OS
attn.
G0 L0 Pin
1 L0 Pase,0
2- Predicted &
simulated OSNRs
…
1 LH
1 LH 1
attn.
OS
Target
Edge-node
# Target
attn.
HP
HP
HP
G0 Pin
Pase,0
GH Pase, H
G2 Pase, 2
1 L1
OS
OSNRH
OSNR2
G0G1G2 L0 L1 Pin
G0G1 L0 Pin
G1G2 L0 L1 Pase,0  G2 L1 Pase,1  Pase,2
G1 L0 Pase,0  Pase,1
G0G1 L0 L1 Pin
G1 L0 L1 Pase,0  1 L1 Pase,1
…
attn. Attenuator
Optical fiber
Optical pre-amplifier
45
T heoretical, OSNR = 28dB
0
T heoretical, OSNR = 34dB
40
0
T heoretical, OSNR = 40dB
0
Simulation, OSNR 0 = 28dB
OSNR (dB)
35
Simulation, OSNR 0 = 34dB
30
Simulation, OSNR 0 = 40dB
25
Ref:
20
Z. Ghassemlooy et al., IEEE 49th
GLOBECOM 2006, USA, (accepted)
15
HUT - ICCE 2006
10
0
1
2
3
Number of hops
4
5
17
Contents

Introduction

PPM-Header Processing Overview
–
–
–
–
–
–
Operation Principle
Clock Extraction
PPM Address Conversion
PPM Header Correlation
All-optical Flip-Flop
Wavelength Conversion

Simulation results

Summary
HUT - ICCE 2006
Summary

PPM-HP
–
–
–
–
–
–

Provides ultrafast header processing
Reduces the number of routing table entries
Avoids the SOA recovery time during header correlation
Operates in a large BW as employing SOA
Supports multiple transmitting modes (uni/multi/broadcasting)
Offers add/drop edge node scalability
Further investigation
–
–
–
–
ASE noise sources
Timing jitter and pulse dispersion effects on PPM-HP
Effective wavelength conversion
IP-based optical transparent network
HUT - ICCE 2006
18
Thank you
HUT - ICCE 2006
Related documents