Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chap 3 Linear Differential Equations 王 俊 鑫(Chun-Hsin Wang) 中華大學 資訊工程系 Fall 2002 Outline Second-Order Homogeneous Linear Equations Second-Order Homogeneous Equations with Constant Coefficients Modeling: Mass-Spring Systems, Electric Circuits Euler-Cauchy Equation Wronskian Second-Order Nonhomogeneous Linear Equations Higher Order Linear Differential Equations Page 2 Outline 常係數 二階線性齊次 常微分方程 歐拉-柯西 微分方程 二階線性齊次 常微分方程 二階線性非齊次 常微分方程 高階線性 常微分方程 二階線性 常微分方程 線性 常微分方程 二階 常微分方程 Page 3 Second-Order ODE General Form for Second-Order Linear ODE Implicit Form F ( x, y , y , y ) 0 Explicit Form y p( x ) y q( x ) y r ( x ) Page 4 Second-Order Homogeneous Linear Equations Second-Order Homogeneous Linear ODE y p( x ) y q( x ) y 0 p(x), q(x): coefficient functions Example (1 x ) y 2 xy 6 y 0 2 Page 5 Examples of Nonlinear differential equations x( yy y ' ) 2 y ' y 0 2 y' y ' 1 2 Page 6 A linear combination of Solutions for homogeneous linear equation Example: y " y 0 y e , y e x y 3e 5e x x x Page 7 Second-Order Homogeneous Linear Equations Linear Principle (Superposition Principle) If y1 and y2 are the solutions of y p( x ) y q( x ) y 0 y = c1y1+ c2y2 is also a solution (c1, c2 arbitrary constants) y is called the linear combination of y1 and y2 Page 8 Second-Order Homogeneous Linear Equations Proof: Let y c1 y1 c2 y2 y p( x ) y q( x ) y (c1 y1 c2 y2 ) p( x )( c1 y1 c2 y2 ) q( x )( c1 y1 c2 y2 ) c1 y1 p( x ) y1 q( x ) y1 c2 y2 p( x ) y2 q( x ) y2 0 Note ( cy ) cy ( y1 y2 ) y1 y2 Page 9 Does the Linearity Principle hold for nonhomogeneous linear or nonlinear equations ? Example: A nonhomogeneous linear differential equation y 1 cos x, y 1 sin x y " y 1 (1 cos x ) (1 sin x ) Example: A nonlinear differential equation y x ,y 1 2 y" y xy' 0 x 1 2 Page 10 Initial Value Problem for SecondOrder homogeneous linear equations For second-order homogeneous linear equations, y p( x ) y q( x ) y 0 a general solution will be of the form y c1 y1 c2 y2 , a linear combination of two solutions involving two arbitrary constants c1 and c2 An initial value problem consists two initial conditions. y ( x0 ) k0 , y ' ( x0 ) k1 Page 11 Initial Value Problem Example: y" y 0, y c1e c2e x x y (0) 4, y ' (0) 2 Observation: y1 e , y2 le x x Our solution would not have been general enough to satisfy the two initial conditions and solve the problem. Page 12 A General Solution of an Homogeneous Linear Equation Definition: A general solution of an equation y p( x ) y q( x ) y 0 on an open interval I is a solution y c1 y1 c2 y2 with y1 and y2 not proportional solutions of the equation on I and c1 ,c2 arbitrary constants. The y1 and y2 are then called a basis (or fundamental system) of the equation on I A particular solution of the equation is obtained if we assign specific values to c1 ,c2 Page 13 Linear Independent Two functions y1(x) and y2(x) are linear independent on an interval I where they are defined if k1 y1( x) k2 y2 ( x) 0 k1 0, k2 0 Example y1 cos x, y2 sin x y " y 0 Page 14 How to obtain a Bass if One Solution is Known ? Method of Reduction Order y p( x ) y q( x ) y 0 Given y1 Find y2 e p ( x ) dx y2 y1 2 1 y dx Page 15 Second-Order Homogeneous Linear Equations Proof: Let y2 uy1 y2 uy1 uy1, y2 uy1 2uy1 uy1 y p ( x ) y q( x ) y 0 (uy1 2uy1 uy1) p( x )( uy1 uy1 ) q( x )( uy1 ) 0 uy1 u( 2 y1 p( x ) y1 ) u ( y1 p ( x ) y1 q( x ) y1 ) 0 2 y1 p ( x ) y1 u u 0, Let U u y1 2 y1 p ( x ) y1 U U 0 y1 Page 16 Second-Order Homogeneous Linear Equations Proof: dU 2 y1 p( x ) y1 dx U y1 ln U 2 ln y1 p( x )dx e p ( x ) dx U y12 e p ( x ) dx y2 y1 Udx y1 2 1 y dx Page 17 Second-Order Homogeneous Linear Equations Example 3-1: x 2 y xy y 0, y1 x, Find y2 Sol: 1 1 y y 2 y 0 x x e p ( x ) dx y2 y1 2 1 y dx x e 1 dx x x 2 dx eln x 1 x 2 dx x dx x x x ln x Page 18 Second-Order Homogeneous Linear Equations Exercise 3-1: Basic Verification and Find Particular Solution y 9 y 0 y 2 y y 0 4 x 2 y 3 y 0 Basis cos(3x ), sin( 3x ) Initial Condition y (0) 4, y (0) 6 Basis e x , xe-x Initial Condition y (0) 1, y (0) 0 Basis x 1/ 2 , x 3/2 Initial Condition y (1) 3, y (1) 2.5 Page 19 Exercise: Reduce of order if a solution is known. x y"5xy'9 y 0, y1 x 2 3 Page 20 Second-Order Homogeneous Equations with Constant Coefficients General Form of Second-Order Homogeneous Equations with Constant Coefficients y ay by 0 whose coefficients a and b are constant. Page 21 Second-Order Homogeneous Equations with Constant Coefficients Sol: y ay by 0 Try y e x x x ( e ) a ( e ) be e 2 x ae x be ( a b ) e 2 Characteristic Equation x x x 0 0 0 a b 0 2 Page 22 Second-Order Homogeneous Equations with Constant Coefficients Case 1: 兩相異實根 a 4b 0 2 Case 2: 重根 y c1e 1 x c2e 2 x 1 , 1 a 4b 0 2 1, 2 y (c1 c2 x )e 1 x Case 3: 共軛虛根 m ni a 4b 0 2 y emx ( A cos nx B sin nx) Page 23 Second-Order Homogeneous Equations with Constant Coefficients Example 3-2: y y 2 y 0, y (0) 4, y (0) 5 Sol: Step 1: Find General Solution 2 0, 1,2 2 y c1e x c2 e 2 x Page 24 Second-Order Homogeneous Equations with Constant Coefficients Step 2: Find Particular Solution y c1e x c2 e 2 x y c1e 2c2 e x 2 x y (0) c1 c2 4 y (0) c1 2c2 5 c1 1, c2 3 y e 3e x 2 x Page 25 Second-Order Homogeneous Equations with Constant Coefficients Step 3: Plot Particular Solution MATLAB Code x=[0:0.01:2]; y=exp(x)+3*exp(-2*x); plot(x,y) Page 26 Case 2 Real Double Root = -a/2 a 2 4b 0, y1 e ax 2 Let y2 uy1 y2 uy1 uy1, y2 uy1 2uy1 uy1 y ay by 0 (uy1 2uy1 uy1) a (uy1 uy1 ) b(uy1 ) 0 uy1 u( 2 y1 ay1 ) u ( y1 ay1 by1 ) 0 y1 ay1 by1 0 2 y '1 ae ax 2 ay1 , 2 y '1 ay1 0 u" y1 0, u" 0 u c1 x c2 take u x, y2 xy1 xe ax 2 y ( c1 c2 x )e ax 2 Page 27 Second-Order Homogeneous Equations with Constant Coefficients Example 3-3: y 4 y 4 y 0, y (0) 3, y (0) 1 Sol: Step 1: Find General Solution 4 4 0, 2,2 2 y ( c1 c2 x )e 2 x Page 28 Second-Order Homogeneous Equations with Constant Coefficients Step 2: Find Particular Solution y ( c1 c2 x )e 2 x y c2 e 2x 2( c1 c2 x )e 2x y (0) c1 3 y (0) c2 2c1 1 c1 3, c2 5 y (3 5 x )e 2x Page 29 Second-Order Homogeneous Equations with Constant Coefficients Step 3: Plot Particular Solution MATLAB Code x=[0:0.01:2]; y=(3-5*x).*exp(2*x); plot(x,y) Page 30 Euler Formula Euler Formula e cos x i sin x ix Proof: Maclaurin Series 2 3 n x x x ex 1 x 2! 3! n 0 n! x2 x4 x6 ( 1)n x 2 n cos( x ) 1 2! 4! 6! (2n)! n 0 x3 x5 x7 ( 1)n x 2 n 1 sin( x ) x 3! 5! 7! n 0 ( 2n 1)! Page 31 Euler Formula Proof: 2 3 n ( ix ) ( ix ) ( ix ) ix ix e 1 ix e cos xi sin 2! 3! n 0 n! x x 2 ix 3 x 4 ix 5 x 6 ix 7 1 ix 2! 3! 4! 5! 6! 7! x2 x4 x6 x3 x5 x7 1 i x 2! 4! 6! 3! 5! 7! cos( x ) i sin( x ) Page 32 Euler Formula 幾何 虛數 i e 1 分析 負數 自然數 Page 33 Complex Exponential Function z s it e e z s it e e e (cos t i sin t ) s it s Page 34 Case 3 a 2 4b 0 a a 1 iw, 2 iw, 2 2 1 2 w b a 4 1x ( a 2 ) x iwx ( a 2) x e e e (cos wx i sin wx) e 2x e ( a 2 ) x iwx y1 e y e ax 2 ax 2 e ( a 2) x (cos wx i sin wx) cos wx, y2 e ax 2 sin wx ( A cos wx B sin wx) Page 35 Second-Order Homogeneous Equations with Constant Coefficients Example 3-4: y 0.2 y 4.01 y 0, y (0) 0, y (0) 2 Sol: Step 1: Find General Solution 0.2 4.01 0, 0.1 2i 2 y e 0.1x ( A cos 2 x B sin 2 x ) Page 36 Second-Order Homogeneous Equations with Constant Coefficients Step 2: Find Particular Solution ye 0 .1 x ( A cos 2 x B sin 2 x ) y 0.1e 0.1 x ( A cos 2 x B sin 2 x ) e 0.1 x ( 2 A sin 2 x 2 B cos 2 x ) y ( 0) A 0 y (0) 2 B 2 A 0, B 1 y e 0.1 x sin 2 x Page 37 Second-Order Homogeneous Equations with Constant Coefficients Step 3: Plot Particular Solution MATLAB Code x=[0:0.1:30]; y=exp(-0.1*x).*sin(2*x); plot(x,y) Page 38 Second-Order Homogeneous Equations with Constant Coefficients Exercise 3-2: Find General Solution 4 y 4 y 3 y 0 2 y 9 y 0 y 4 y 4 y 0 兩相異實根 重根 9 y 30 y 25 y 0 y 2 y 2 y 0 4 y 4 y 10 y 0 共軛虛根 Page 39 Modeling: Mass-Spring Systems my cy ky 0 Page 40 Modeling: Electric Circuits 1 LI RI I 0 C Resistor (ohms) Capacitor (farads) Inductor (heries) Page 41 Modeling my cy ky 0 my cy ky 0 c k 0 m m c 1 2 1, 2 c 4mk 2m 2m c 1 , c 2 4mk 2m 2m 1 , 2 2 Page 42 Modeling y (t ) c1e Overdamping ( ) t c2e ( ) t c 4mk 0 2 Page 43 Modeling y (t ) (c1 c2t )e t Critical Damping c 2 4mk 0 Page 44 Modeling c 4mk 0 2 y ( t ) e t ( A cos w*t B sin w*t ) Ce αt cos( w*t ), C A2 B 2 , tan B A Underdamping Page 45 Euler-Cauchy Equation Euler-Cauchy Equation x y axy by 0 2 Sol : Substitute y x m , y mx m 1 , y m( m 1) x m 2 x 2 m( m 1) x m 2 axmxm 1 bx m 0 m( m 1) x m amx m bx m 0 The Auxiliary Equation m (a 1)m b 0 2 Page 46 Euler-Cauchy Equation Case 1: Distinct Real Roots m1, m2 y c1 x m1 c2 x m2 Example 3-5: x 2 y 2.5xy 2.0 y 0 Sol : Auxiliary Equation m 3.5m 2 0 2 m 0.5, 4 y c1 x 0. 5 c2 x 4 Page 47 Euler-Cauchy Equation Case 2: Double Roots m=(1-a)/2 y (c1 c2 ln x ) x m Page 48 Euler-Cauchy Case 2 :Example Example x 2 y 3xy 4 y 0 Sol : Auxiliary Equation m 2 4m 4 0 m 2, 2 y ( c1 c2 ln x ) x 2 Page 49 Euler-Cauchy Equation Case 3: Complex Roots m = a ± bi y x A cos(b ln x ) B sin( b ln x ) a Page 50 Euler-Cauchy Case 3 :Example Example x y 7 xy 13 y 0 2 Sol : Auxiliary Equation m 6m 13 0 2 m 3 2i y x 3 A cos( 2 ln x ) B sin( 2 ln x ) Page 51 Existence and Uniqueness Theory y p( x ) y q( x ) y 0 (1) y c1 y1 c2 y2 (2) y ( x0 ) k0 , y ' ( x0 ) k1 (3) If p(x) and q(x) are continuous function on some open interval and x0 is in , then the initial value problem consisting of (1) and (3) has a unique solution y(x) on the interval . Page 52 Wronskian A set of n functions y1(x), y2(x), …, yn(x), is said to be linearly dependent over an interval I if there exist n constants c1, c2, …, cn, not all zero, such that c1 y1 ( x ) c2 y2 ( x ) cn yn ( x ) 0 Otherwise the set of functions is said to be linearly independent Page 53 Wronskian A set of n functions y1(x), y2(x), …, yn(x), is linearly independent over an interval I if and only if the determinant (Wronski determinant, or Wronskian) y1 y1 y2 y2 yn yn y1( n ) y2( n ) W ( y1 , y2 ,, yn ) yn( n ) 0 Page 54 Wronskian Example 3-8: cos x, sin x Sol: W (cos x, sin x ) cos x sin x sin x cos x cos2 x sin 2 x 1 0 cosx, sinx are linearly independent Page 55 Linear Dependence and Independence of Solution Suppose that (1) has continuous coefficients p(x) and q(x) on an open interval . Then two solutions y1 and y2 of (1) on are linear dependent on if and only if their Wronskian W is zero at some x0 in . Furthermore, if W=0 for x= x0, then W=0 on ; hence if there is an x1in at which W is not zero, then y1 ,y2 are liner independent on . Page 56 Illustration of Theorem 2 Example 1 y1 coswx, y2 sinwx y " w 2 y 0 Example 2 y"2 y ' y 0, y ( c1 c2 x )e x Page 57 A General Solution of (1) includes All Solutions y p ( x ) y q( x ) y 0 (1) Theorem 3 (Existence of a general solution) If p(x) and q(x) are continuous on an open interval , then (1) has a general solution on . Theorem 4 (General solution) Suppose that (1) has continuous coefficients p(x) and q(x) on some open interval . Then every solution y=Y(x) of (1) is of the form Y c1 y1 ( x) c2 y2 ( x) where y1 , y2 form a basis of solutions of (1) on and c1, c2 are suitable constants. Hence (1) does not have singular solutions (I.e., solutions not obtainable from a general solution) Page 58 Nonhomogeneous Equations y p ( x ) y q( x ) y r ( x ) (1) y p ( x ) y q( x ) y 0 ( 2) Theorem (a) The difference of two solutions of (1) on some open interval is a solution of (2) on (b) The sum of a solution of (1) and a solution of (2) on is a solution of (1) on Page 59 y y p ( x ) y q( x ) y p ( x ) y q( x ) y r ( x ) (1) 0 ( 2) A general solution of the nonhomogeneous equation (1) on some open interval is a solution of the form y ( x ) yh ( x ) y p ( x ) (3) where yh(x)=c1y1(x)+c2y2(x) is a general solution of the homogeneous equation (2) on and yp(x) is any solution of (1) on containing no arbitrary constants. A particular solution of (1) on is a solution obtain from (3) by assigning specific values to the arbitrary constants c1 and c2 in yh(x). Page 60 Practical Conclusion To solve the nonohomegeneous equation (1) or an initial value problem for (1) , we have to solve the homogeneous equation (2) and find any particular solution yp of (1) y p ( x ) y q( x ) y r ( x ) (1) y p ( x ) y q( x ) y 0 ( 2) Page 61 Initial value problem for a nonhomogeneous equation Example y"2 y '101 y 10.4e x y (0) 1.1, y ' (0) 0.9 Page 62 Solution by Undetermined Coefficients Method of Undetermined Coefficients y ay by r ( x ) General Solution: y = y h + yp yh : Homogeneous Solution yp : Particular Solution Page 63 Solution by Undetermined Coefficients r (x ) yp ke nx nx kx n ke Kn xn Kn1xn1 K1x K0 k cos x K1 cos x K 2 sin x k sin x K1 cos x K 2 sin x nx nx ke cos x e ( K1 cos x K 2 sin x ) nx nx ke sin x e ( K1 cos x K 2 sin x ) Page 64 Rules for the Method of Undetermined Coefficients Basic Rule Modification Rule Sum Rule Page 65 Solution by Undetermined Coefficients 2 Example 3-9: y 4 y 8 x , Find y p Sol: y p K 2 x K1 x K 0 2 y p 2 K 2 2 K 2 4( K 2 x 2 K1 x K 0 ) 8 x 2 4 K 2 x 4 K1 x ( 2 K 2 4 K 0 ) 8 x 2 2 K 2 2, K1 0, K 0 1 yp 2x 1 2 Page 66 Example for Modification Rule Example 1: in the case of a simple root y 3 y'2 y e , Find y p x Example 2: in the case of a double root y 2 y ' 1 e x , y (0) 1, y ' (0) 1 Example 3: sum rule. y 2 y '5 y 1.25e0.5 x 40 cos 4 x 55 sin 4 x, y (0) 0.2, y ' (0) 60.1 Page 67 Second-Order Non-homogeneous Linear Equations Method of Variation of Parameters y p( x ) y q( x ) y r ( x ) Particular Solution: y p ( x ) y1 y2 r y1r dx y2 dx W W y1, y2 : Homogeneous Solutions W : Wronskian of y1 and y2 Page 68 Second-Order Non-homogeneous Linear Equations 2 Example 3-10: y 4 y 8 x , Find y p Sol: y1 cos 2 x, y2 sin 2 x W cos 2 x sin 2 x 2 sin 2 x 2 cos 2 x 2 y2 r yr dx y2 1 dx W W 8 x 2 sin 2 x 8 x 2 cos 2 x cos 2 x dx sin 2 x dx 2 2 y p y1 cos 2 x 2 x 2 cos 2 x 4 x cos 2 xdx sin 2 x 2 x 2 sin 2 x 4 x sin 2 xdx cos 2 x 2 x 2 cos 2 x 2 x sin 2 x cos 2 x sin 2 x 2 x 2 sin 2 x 2 x cos 2 x sin 2 x 2 x2 1 Page 69 Higher Order Linear Differential Equations Higher Order Homogeneous Linear ODE y ( n ) pn 1 ( x ) y ( n 1) p1 ( x ) y p0 ( x ) y 0 If y1, y2, …, yn are the solutions of y (n) pn 1 ( x ) y ( n 1) p1 ( x ) y p0 ( x ) y 0 y = c1y1+ c2y2 +… + cnyn will be the general solution Page 70 Higher Order Linear Differential Equations Higher Order Nonhomogeneous Linear ODE y ( n ) pn 1 ( x ) y ( n 1) p1 ( x ) y p0 ( x ) y r ( x ) General Solution: y = y h + yp yh : Homogeneous Solution yp : Particular Solution Page 71