Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
10-6 10-6Identifying IdentifyingConic ConicSections Sections Warm Up Lesson Presentation Lesson Quiz Holt Algebra Holt Algebra 22 10-6 Identifying Conic Sections Warm Up Solve by completing the square. 1. x2 + 6x = 91 2. 2x2 + 8x – 90 = 0 Holt Algebra 2 10-6 Identifying Conic Sections Objectives Identify and transform conic functions. Use the method of completing the square to identify and graph conic sections. Holt Algebra 2 10-6 Identifying Conic Sections In Lesson 10-2 through 10-5, you learned about the four conic sections. Recall the equations of conic sections in standard form. In these forms, the characteristics of the conic sections can be identified. Holt Algebra 2 10-6 Identifying Conic Sections Holt Algebra 2 10-6 Identifying Conic Sections Example 1: Identifying Conic Sections in Standard Form Identify the conic section that each equation represents. A. (y – 2)2 x+4 = 10 This equation is of the same form as a parabola with a horizontal axis of symmetry. B. This equation is of the same form as a hyperbola with a horizontal transverse axis. Holt Algebra 2 10-6 Identifying Conic Sections Example 1: Identifying Conic Sections in Standard Form Identify the conic section that each equation represents. C. This equation is of the same form as a circle. Holt Algebra 2 10-6 Identifying Conic Sections Check It Out! Example 1 Identify the conic section that each equation represents. a. x2 + (y + 14)2 = 112 2 (y – 6)2 (x – 1) b. – = 1 22 212 Holt Algebra 2 10-6 Identifying Conic Sections All conic sections can be written in the general form Ax2 + Bxy + Cy2 + Dx + Ey+ F = 0. The conic section represented by an equation in general form can be determined by the coefficients. Holt Algebra 2 10-6 Identifying Conic Sections Example 2A: Identifying Conic Sections in General Form Identify the conic section that the equation represents. 4x2 – 10xy + 5y2 + 12x + 20y = 0 A = 4, B = –10, C = 5 Identify the values for A, B, and C. B2 – 4AC 2 (–10) – 4(4)(5) Substitute into B2 – 4AC. 20 Simplify. Because B2 – 4AC > 0, the equation represents a hyperbola. Holt Algebra 2 10-6 Identifying Conic Sections Example 2B: Identifying Conic Sections in General Form Identify the conic section that the equation represents. 9x2 – 12xy + 4y2 + 6x – 8y = 0. A = 9, B = –12, C = 4 Identify the values for A, B, and C. B2 – 4AC 2 (–12) – 4(9)(4) Substitute into B2 – 4AC. 0 Simplify. Because B2 – 4AC = 0, the equation represents a parabola. Holt Algebra 2 10-6 Identifying Conic Sections Example 2C: Identifying Conic Sections in General Form Identify the conic section that the equation represents. 8x2 – 15xy + 6y2 + x – 8y + 12 = 0 A = 8, B = –15, C = 6 Identify the values for A, B, and C. B2 – 4AC (–15)2 – 4(8)(6) Substitute into B2 – 4AC. 33 Simplify. Because B2 – 4AC > 0, the equation represents a hyperbola. Holt Algebra 2 10-6 Identifying Conic Sections Check It Out! Example 2a Identify the conic section that the equation represents. 2 2 9x + 9y – 18x – 12y – 50 = 0 Holt Algebra 2 10-6 Identifying Conic Sections Check It Out! Example 2b Identify the conic section that the equation represents. 12x2 + 24xy + 12y2 + 25y = 0 Holt Algebra 2 10-6 Identifying Conic Sections If you are given the equation of a conic in standard form, you can write the equation in general form by expanding the binomials. If you are given the general form of a conic section, you can use the method of completing the square from Lesson 5-4 to write the equation in standard form. Remember! You must factor out the leading coefficient of x2 and y2 before completing the square. Holt Algebra 2 10-6 Identifying Conic Sections Example 3A: Finding the Standard Form of the Equation for a Conic Section Find the standard form of the equation by completing the square. Then identify and graph each conic. x2 + y2 + 8x – 10y – 8 = 0 Rearrange to prepare for completing the square in x and y. x2 + 8x + + y2 – 10y + Complete both squares. 2 Holt Algebra 2 =8+ + 10-6 Identifying Conic Sections Example 3A Continued 2 2 (x + 4) + (y – 5) = 49 Factor and simplify. Because the conic is of the form (x – h)2 + (y – k)2 = r2, it is a circle with center (–4, 5) and radius 7. Holt Algebra 2 10-6 Identifying Conic Sections Example 3B: Finding the Standard Form of the Equation for a Conic Section Find the standard form of the equation by completing the square. Then identify and graph each conic. 5x2 + 20y2 + 30x + 40y – 15 = 0 Rearrange to prepare for completing the square in x and y. 5x2 + 30x + + 20y2 + 40y + = 15 + + Factor 5 from the x terms, and factor 20 from the y terms. 5(x2 + 6x + Holt Algebra 2 )+ 20(y2 + 2y + ) = 15 + + 10-6 Identifying Conic Sections Example 3B Continued Complete both squares. 2 2 6 2 2 2 5 x + 6x + + 20 y + 2y + 2 2 5(x + 3)2 + 20(y + 1)2 = 80 (x + 3)2 + (y +1 )2 = 16 Holt Algebra 2 4 1 2 6 2 = 15 + 5 + 20 2 2 Factor and simplify. Divide both sides by 80. 10-6 Identifying Conic Sections Example 3B Continued (x – h)2 (y – k)2 + = 1, Because the conic is of the form 2 2 a b it is an ellipse with center (–3, –1), horizontal major axis length 8, and minor axis length 4. The covertices are (–3, –3) and (–3, 1), and the vertices are (–7, –1) and (1, –1). Holt Algebra 2 10-6 Identifying Conic Sections Check It Out! Example 3a Find the standard form of the equation by completing the square. Then identify and graph each conic. y2 – 9x + 16y + 64 = 0 Holt Algebra 2 10-6 Identifying Conic Sections Check It Out! Example 3a Continued Holt Algebra 2 10-6 Identifying Conic Sections Check It Out! Example 3b Find the standard form of the equation by completing the square. Then identify and graph each conic. 16x2 + 9y2 – 128x + 108y + 436 = 0 Holt Algebra 2 10-6 Identifying Conic Sections Check It Out! Example 3b Continued Holt Algebra 2