Download Slide 5- 3 Homework, Page 468

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Homework, Page 468
Use a sum or difference identity to find an exact value.
1. sin15
sin15  sin  45  30   sin 45 cos30  cos 45 sin 30
 2 3  2 1
6
2





4
 2 2   2 2 4
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
6 2
4
Slide 5- 1
Homework, Page 468
Use a sum or difference identity to find an exact value.
5. cos


12




  
cos  cos     cos cos  sin sin
12
3
4
3
4
3 4
1 2  3 2
2
6





4
2 2   2 2  4
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
2 6
4
Slide 5- 2
Homework, Page 468
Use a sum or difference identity to find an exact value.
7
9. cos
12
7




  
cos
 cos     cos cos  sin sin
12
3
4
3
4
3 4
1 2  3 2
2
6





4
2 2   2 2  4
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
2 6
4
Slide 5- 3
Homework, Page 468
Write the expression as the sine, cosine, or tangent of an angle.


5
2
13. sin cos
sin

5
cos

2
 sin
 sin

2

2
cos
cos

5

5
 sin

5
cos



 cos sin
2
5
2
  
 sin   
5 2
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 4
Homework, Page 468
Write the expression as the sine, cosine, or tangent of an angle.


7
7
17. cos cos x  sin sin x




cos cos x  sin sin x  cos   x 
7
7
7

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 5
Homework, Page 468
Write the expression as the sine, cosine, or tangent of an angle.
tan 2 y  tan 3 x
21.
1  tan 2 y tan 3 x
tan 2 y  tan 3 x
 tan  2 y  3 x 
1  tan 2 y tan 3 x
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 6
Homework, Page 468
Prove the identity.


25. cos  x    sin x
2



sin x  cos  x  
2

 cos x cos

 sin x sin
2
 cos x  0   sin x 1

2
 sin x
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 7
Homework, Page 468
Prove the identity.
29.
  1  tan 

tan    
4  1  tan 

1  tan 


 tan   
1  tan 
4


tan   tan

1  tan  tan
tan   1

1  tan  1
4

4
1  tan 

1  tan 
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 8
Homework, Page 468
Match each graph with a pair of the equations.
33.
 d . y  sin  2 x  5
 h. y  sin 2 x cos5  cos 2 x sin 5
sin  2 x  5   sin 2 x cos5  cos 2 x sin 5
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 9
Homework, Page 468
Prove the reduction formula.


37. sin   u   cos u
2



cos u  sin   u 
2

 sin


cos u  cos sin u
2
2
 1 cos u   0  sin u
 cos u
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 10
Homework, Page 468
Prove the reduction formula.


41. csc   u   sec u
2

1
1


 cos u
sin   u 
2



cos u  sin   u 
2

 sin

cos u  cos

2
2
 1 cos u   0  sin u
sin u
 cos u
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 11
Homework, Page 468
Express the function as a sinusoid in the form y = a sin (bx + c).
45. y  cos3x  2sin 3x
y  cos3 x  2sin 3 x  y  a sin  bx  c 
a sin  bx  c   a  sin bx cos c  cos bx sin c 
2sin 3 x  cos3 x  a cos c sin bx  a sin c cos bx
b  3  a cos c  2  a sin c  1
2
2
2
a
cos
c

a
sin
c

2

1

a
5a  5

 

2
2
2
4
1 2
cos c 
;sin c 
 c  cos
 0.464
5
5
5

1 2 
cos3 x  2sin 3 x  5 sin  3 x  cos
  2.236sin  3 x  0.464 
5

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 12
Homework, Page 468
Prove the identity.
49.
cos3x  cos3 x  3sin 2 x cos x
cos3 x  3sin 2 x cos x  cos3 x
 cos 2 x cos x  sin 2 x sin x
 cos x  cos x cos x  sin x sin x  
sin x  sin x cos x  cos x sin x 
 cos3 x  cos x sin 2 x 
sin 2 x cos x  sin 2 x cos x
 cos3 x  3sin 2 x cos x
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 13
Homework, Page 468
Prove the identity.
tan 2 x  tan 2 y
53. tan  x  y  tan  x  y  
1  tan 2 x tan 2 y
tan x  tan y tan x  tan y
tan  x  y  tan  x  y  
1  tan x tan y 1  tan x tan y
tan 2 x  tan 2 y

1  tan 2 x tan 2 y
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 14
Homework, Page 468
57. If cos A + cos B = 0, then A and B are
supplementary angles.
False.
If A and B are supplementary angles, then A  B  180º.
For example, cos   cos 2  0, but  + 2  180º.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 15
Homework, Page 468
f 1  f  2 
61. A function with the property f 1  2  
is
1  f 1 f  2 
A. f  x   sin x
f  x   tan x
B.
C. f  x   sec x
D.
E.
f  x   ex
f  x   1
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 16
5.4
Multiple-Angle Identities
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Quick Review
Find the general solution of the equation.
1. cot x  1  0
2. (sin x)(1  cos x)  0
3. cos x  sin x  0


4. 2sin x  2  2sin x  1  0
5. Find the height of the isosceles triangle with base length 6
and leg length 4.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 18
Quick Review Solutions
Find the general solution of the equation.
3
1. cot x  1  0
x
n
4
2. (sin x)(1  cos x)  0 x   n
3. cos x  sin x  0

x


4
n
4. 2sin x  2  2sin x  1  0 x 
5
 2 n
6
6
5. Find the height of the isosceles triangle with base length 6
x

5
7
 2 n, x 
 2 n,
4
4
 2 n, x 
and leg length 4.
7
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 19
What you’ll learn about




Double-Angle Identities
Power-Reducing Identities
Half-Angle Identities
Solving Trigonometric Equations
… and why
These identities are useful in calculus courses.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 20
cos 2 x 
Deriving Double-Angle Identities
sin 2 x 
tan 2 x 
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 21
Double Angle Identities
sin 2u  2sin u cos u
cos 2 u  sin 2 u

2
cos 2u  2cos u  1
1  2sin 2 u

2 tan u
tan 2u 
2
1  tan u
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 22
Example Solving a Problem Using double
Angle Identities
Find all solutions in the interval  0,2 
sin 2 x  sin x
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 23
Power-Reducing Identities
1  cos 2u
sin u 
2
1  cos 2u
2
cos u 
2
1  cos 2u
2
tan u 
1  cos 2u
2
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 24
Example Reducing a Power of 4
Rewrite sin 4 x in terms of trigonometric functions
with no power greater than 1.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 25
Half-Angle Identities
u
1  cos u
sin  
2
2
u
1  cos u
cos  
2
2
 1  cos u

1

cos
u

u 1  cos u
tan  
2  sin u
 sin u
1  cos u

Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 26
Example Using a Double Angle Identity
Solve algebraically in the interval [0, 2 ) : sin 2 x  sin x.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 27



Homework
Homework Assignment #13
Read Section 5.5
Page 475, Exercises: 1 – 57 (EOO)
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 28
What you’ll learn about




Deriving the Law of Sines
Solving Triangles (AAS, ASA)
The Ambiguous Case (SSA)
Applications
… and why
The Law of Sines is a powerful extension of the triangle
congruence theorems of Euclidean geometry.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 29
Deriving the Law of Sines
Consider the two triangles ABC.
C
b
a
h
A
B
c
C
b
a
A
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
c
h
B
Slide 5- 30
Law of Sines
In ABC with angles A, B, and C opposite sides a, b,
and c, respectively, the following equation is true:
sin A sin B sin C


.
a
b
c
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 31
Example Solving a Triangle Given Two
Angles and a Side
Solve ABC given that A  38, B  46, and a  9.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 32
Example Solving a Triangle Given Two Sides
and an Angle (The Ambiguous Case)
Solve ABC given that a  5, b  6, and A  30.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 33
Example Finding the Height of a Pole
A road slopes 15 above the horizontal, and a vertical telephone
pole stands beside the road. The angle of elevation of the Sun is
65, and the pole casts a 15 foot shadow downhill along the road.
A
65
Find the height of the pole.
º
x
B
15º
C
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
Slide 5- 34
Related documents