Download e 3x

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
By Heena Nainwani
(13026017017)
2nd Order Linear homogenous diff.
equation with constant co-efficient.







The homogeneous equation is y’’+ay’+by=0
consider y=emx then y’=emx m ,y’’=emx m2
Then the equation formed is m2+am+b=0
Above equation is known as auxiliary
equation.
Case1: If roots are distinct then y=c1em1x
+c2em2x
Case2: : If roots are equal y=(c1 +c2 x) emx
Case 3: If roots are complex then
y=epx (cosqx+isinqx)
Method of finding particular Integral
Y=CF+PI
 To find PI when R(x) is of the form
eax where a is a constant.
 Result: PI = 1/f(D) eax
= 1/f(D) eax ,f(a)!=0
= x*1/f(D) eax ,f(a)=0

For example:

Q: (D2-5D+6)y= e3x
PI=1/(D2-5D+6) * e3(Here instead of D put 3 )
=x*1/(2D-5)* e3x
=x*1/2* e3x
=x1/2 e3x
CI=m2-5D+6
=(m-3)(m-2)
m=3 and m=2.
Here roots are equal
y=C.F+P.I
= c1e3x +c2e2x +x*1/2 e3x

CASE2: To find PI when R(x) is of
the form sinax or cosax.
RESULT:
 1/P(D)2 sinax=1/Ø{-a2}*sinaxØ{-a2}≠ 0
=
X 1/Ø’{-x2}≠ 0 sinax
Ø(-a2 )=0
Where f(D) = Ø(D2)

For example:
Q: (D2-2D+5)y= sin3x
 PI =1/(D2-2D+5)*sin3x(Put the value of only in D2 )
=1/-9-2D+5*sin3x
=1/-4-2D*sin3x
=-1/2*(1/(D+2)*sin3x)
=-1/2*((D-2)/(D2-4)*sin3x)
=-1/2((D-2)/-9-4)*sin3x)
=1/26*((D-2) sin3x)
=1/26(Dsin3x-2sin3x)
=1/26(3cos3x-2sin3x)

CASE3: To find PI when R(x) is of the form xm
or polynomial of degree of m where m Is
positive integer

RESULT: R(x)= xm then expand
[1±Ø(D)]-1 upto the term containing Dm
only because term after Dm operation
upon xm become zero.
SOME EXPANSIONS……
[1- X]-1 =1+X+X2+X3+……
 [1+X]-1 =1-X+X2-X3+……
 [1- X]-2 =1+2X+3X2+4X3+……
 [1+X]-2 =1-2X+3X2 -4X3+……
 [1- X]-3 =1+3X+6X2+10X3+……
 [1+X]-3 =1-2X+6X2 -10X3+……

For example:
Q: (D3 + 8) y = x4 + 2x +1
 PI =1/(D3+8)*(x4+2x+1)
=1/8(1+D3/8)*(x4+2x+1)
=1/8(1+D3/8)-1(x4+2x+1)
=1/8[1-D3/8] (x4+2x+1)
=1/[x4+2x+1-1/8(D3{x4+2x+1}]
=1/8[x4+2x+1-1/8(24x)]
=1/8[x4-x+1]

CASE4: To find PI when R(x) is of the form
eax *v where v is any function of x.




RESULT: 1/f(D)* eax *v = eax *1/f(D+a)*v
For example:
Q: (D2-2D+1)y= e3x * x2
PI =1/(D2-2D+1)* e3x * x2 (instead of D we put
(D+3)
= e3x *1/(D+3)2-2(D+3)+1)*x2
= e3x *1/(D2+6D+9-2D-6+1)*x2
= e3x * 1/D2+4D+4*x2
= e3x [1/4(1+(D+D2/4)]*x2
= e3x /4 [1+(D+D2/4)-1*x2
= e3x /4[1-(D+D2/4) +(D+D2/4)2]*x2
= e3x /4 [x2-(2x+2/4)+2]
= e3x/4 [x2-2x+3/2]

Method of Undeterminant coefficient:
To find PI as following tables:
RHS of f(D)y=x
Trial solution
X=eax
Yp=Aeax
X=sinax/cosax
Yp= Asinax+Bcosax
X=c
Yp=A
X=ax+b
Yp=A+Bx
X=ax3+bx2+cx+d
Yp=A+Bx+Cx2+Dx3
X=ax2+bx/ax2+b
Yp=A+Bx+Cx2
X=x*eax
Yp=eax(A+Bx)
x=x2eax
Yp=eax(A+Bx+cx2)
x=asinax
Yp=sinax(A+Bx)+ cosax(A+Bx)
x=e2x
Yp=Ae2x
x=e2x-3e-x
Yp=Ae2x+Be-x
For example:

Q: (D2+4)y=2sin3x
Here to find Yp use above table:
So, Yp=Asin3x+Bcos3x (as comparing of 2sin3x)
Y’p= 3Acos3x-B3sin3x
Y’’p=-A*9sin3x-9Bcos3x
Y’’+4y=2sin3x
=-A9sin3x-9Bcos3x4[Asin3x+Bcos3x]=2sin3x
=-5Asin3x-5Bcos3x=2sin3x
A=(-2/5) and B=0
Yp =-2/5sin3x
Method of variation of parameter:
Yp=-y1ʃy2R(x)/w dx +y2ʃy1(-R(x))/w
where, y1 and y2 are:
Y’’+P(x) y’ + d(x)y=0
And w=y1y2’ - y2y1’

For example:

Q: Using method of variation of
parameter for(D2-6D+9)y=e3x/x2
A.E is m2-6m+9=0
(m-3)2=0
m=3,m=3
Yc=(c1+c2x)e3x
=c1e3x+c2xe3x
Let y1 = e3x , y2 = xe3x
W= y1y2’ - y2y1’
=e6x
Putting values of y1, y2 and w and R in
standard equation
Yp=-y1ʃy2R(x)/w dx +y2ʃy1(-R(x))/w
=-e3xʃxe3x*e3x/x2e6x *dx+xe3xe3x/x2e6x* dx
=-e3xʃ1/x dx+x e3x-ʃx-2dx
=-e3x[logx+1]
Cauchy Euler Equation
A differential equation of the form
(Xn dny/dxn )+a1x(n-1) d(n-1)y/dxn1+a …….+tanyx-------2
Where a1,a2,…..an are constant and x is a
function of n is called cauchy euler equation.
Method:Put x=e2
xdy/dx=Dy
x2 d2y/dx2=D(D-1)y
x3 d3y/dx3=D(D-1)(D-2)y

Lengendre’s Linear Equation
(a1x+b1)n dny/dxn +a1(a2x+b2)(n-1) d(n1)y/dxn- 1+a …….+a yx-------2
n
where a1,b1,a2,b2 are constant and x is a
function of x is called lengendre’s linear
equation.
Method Put ax+b=e2
(ax+b)dy/dx= a Dy
(ax+b)2d2y/dx2=a2D(D-1)y
(ax+b)3d3y/dx3=a3D(D-1)(D-2)y

THANKS……
Related documents