Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Complex Numbers We have already looked at sets of number, ending with , the real numbers. However if we have x 1 0, there is no solution for x in the real numbers. The number set 2 was created, the complex numbers, by defining i 1. 2 Thus a complex number takes the form z x iy where x is the real part Re( z ) y is the imaginary part Im( z ). So z1 3 2i, z2 4 6i, z3 4i are all complex numbers, furthermore z3 is purely imaginary. From i 2 1, we have i 1 , z 2 1, z i. Now we can solve any quadratic equation by using the quadratic formula. a) x 2 2 x 5 0 b) x 2 6 x 25 0 2 4 20 2 2 16 2 2 16 (1) 2 6 36 100 2 6 64 2 6 64 (1) 2 x x 2 16i 2 2 2 4i 2 1 2i 6 64i 2 2 6 8i 2 3 4i c) x 2 2 x 6 0 2 4 24 2 2 20 2 2 20 ( 1) 2 x 2 20i 2 2 2 i 2 5 2 1 i 5 The Arithmetic of Complex Numbers Addition/Subtraction To add or subtract complex numbers we simply perform the required calculation with the real part & with the imaginary part. Examples If z1 4 3i and z2 1 4i evaluate ① z1 z2 (4 (1)) (3 (4)i 3 7i ② z1 z2 ③ z2 z1 (4 (1)) (3 (4)i 5i 1 (1 4) (4 (3)i 5 i Questions Find the sum of (a) z1 3 i & z2 2 5i (b) z1 3 2i & z2 4 4i (c) z1 2i & z2 1 1 i 2 3 Find z1 z2 when 1 3 i 2 2 (d) z1 10 2i & z2 4 3i (e) z1 1 2i & z2 (f) z1 4 6i & z2 6 2i (g) z1 4 3 i 8 & z2 3 i 2 Multiplication To multiply two complex numbers we use the same method as we would use for multiplying out ( x 1)(2 x 4) . We must remember here that i 2 1. 1 1 3 i 4i 2 4 2 ① (4 3i )(2 i ) ② (4 i )(3 2i ) 8 4i 6i 3i 2 8 2i 3(1) 12 8i 3i 2i 2 11 2i ③ 3 3 2i i i 2 4 8 3 19 i 1 4 8 1 19 i 4 8 12 11i 2 10 11i Questions (a) (4 i )(3 i ) (b) (2 3i )(1 i ) (c) (5 6i)(3 2i) (d) (2 i )(3 5i) (e) (8 2i)(1 9i) (f) (4 5i )(4 5i) (g) (3 2i)(3 2i) (h) (2 4i)(2 4i) (g) & (h) show us important results. Here z1 3 2i z2 3 2i & z1 2 4i z2 2 4i . z2 is said to be the complex conjugate of z1 and is denoted by z if z x iy , z x iy. This definition is required for division. 2 Division To perform division it is best to consider it as a fraction. We find the conjugate of the denominator and multiply the numerator and denominator by this. It is a little like the method for rationalising a denominator. Find z1 z2 when z1 2 3i and z2 1 i . z2 1 i z1 2 3i z2 1 i 2 3i 1 i 1 i 1 i 2 2i 3i 3i 2 1 i2 1 5i 2 1 5 i 2 2 Further Examples ① 3i 2 2i (3 i )(2 2i ) (2 2i )(2 2i ) 6 6i 2i 2i 2 4 4i 2 8 4i 8 1 1 i 2 ② 3 5i 3 i ③ (3 5i )(3 i) (3 i )(3 i) 9 3i 15i 5i 2 9 i2 14 12i 10 7 6 i 5 5 2 6i 4i (2 6i )(4 i ) (4 i )(4 i ) 8 2i 24i 6i 2 16 i 2 14 22i 17 14 22 i 17 17 Questions Find z1 z2 when (a) z1 2 4i & z2 7 i (b) z1 4 2i & z2 3 i (c) z1 4 i & z2 3 2i 1 (d) z1 2 i & z2 6 4i 2 3 Square Roots By equating real and imaginary parts we can achieve the square root of a complex number. Clearly, as with the real numbers, there will be two solutions. Examples ① 5 12i Then x 2 y 2 5 36 y2 5 2 y 36 y 4 5 y 2 If x iy 5 12i Then ( x iy)2 5 12i x2 2ixy i 2 y 2 5 12i ( x2 y 2 ) (2 xy)i 5 12i 2 xy 12 6 x y y 4 5 y 2 36 0 ( y 2 9)( y 2 4) 0 y2 4 y 2 y 2 9 so no solns y 6 3 3 2i 2 6 3 3 2i When y 2, x 2 When y 2, x ② 3 4i Then x 2 y 2 3 4 y 2 3 2 y If x iy 3 4i Then ( x iy)2 3 4i x 2 2ixy i 2 y 2 3 4i 2 xy 4 2 x y 4 y 4 3 y 2 y4 3y2 4 0 ( y 2 1)( y 2 4) 0 ( x 2 y 2 ) (2 xy)i 3 4i y2 4 y 2 y 2 1 so no solns y 2 1 1 2i 2 2 1 1 2i When y 2, x 2 When y 2, x Questions Calculate (a) 15 8i (b) 4 24 10i (c) 9 40i Argand Diagrams An argand diagram is used to geometrically represent a complex number. If z x iy we can plot the point P ( x, y ) in the complex plane. OP the position vector represents z. Im( z ) x y The length of OP is called the modulus of z and is denoted z . P The angle is called the argument of z Arg ( z ) 2 n, n . y x O Re( z ) The principle Arg ( z ), In order to help us find the principle argument the following diagram may help. Therefore each time we are dealing with a complex number question, an Argand diagram will help us pick the correct principle argument, so it should always be drawn. Once we know the modulus and principle argument we can change the number from Cartesian form ( x iy ) to another form known as polar form. Modulus Argument From Pythagoras: From Trigonometry: z y y tan y x x x r z x2 y 2 Arg z The polar form, mentioned before, is then created as follows x y cos sin y r r r y r sin x r cos x Thus z x iy ; z r cos ir sin , i.e. 5 z r (cos i sin ) POLAR FORM Examples For each of the following complex numbers, find the modulus, argument write in polar form. tan r z 12 12 ① 1 i 4 Arg z 4 r 2 Im( z ) 1 1 1 1 Re( z ) Polar Form z r (cos i sin ) 2 cos i sin 4 4 tan r z 12 12 ② 1 i 4 Arg z 4 r 2 Im( z ) 1 1 1 Re( z ) Polar Form z r (cos i sin ) 1 2 cos i sin 4 4 2 cos i sin 4 4 (Recall cos( ) cos ,sin( ) sin( ). ) r z 02 32 ③ 3i 3 0 Read from 2 Arg z Argand Diag. 2 r 3 Im( z ) 3 tan Re( z ) Polar Form z r (cos i sin ) 3 cos i sin 2 2 6 ④ 2 3 2i 2 3 6 r4 Im( z ) 2 2 3 2 tan r z (2 3)2 22 Arg z Re( z ) 6 5 6 Polar Form z r (cos i sin ) 5 5 4 cos i sin 6 6 Questions Express the following complex numbers in polar form. (a) z 2 i 2 (c) z i (b) z 1 i 3 (e) z 4 (d) z 1 i 3 Geometric Interpretations in the Complex Plane (Loci) If we place a restriction on the modulus of a complex number we create a locus of the point which moves on the complex plane. Example ① Given z x iy draw the locus of the point which moves on the complex plane so that (a) z 4 (b) z 4 . x2 y 2 4 z 4 x 2 y 2 42 x iy 4 Equation of a circle, centre origin and radius 4. y a) 4 z 4 0 4 b) 4 x 7 y z 4 4 x ② If z x iy , find the equation of the locus z 2 3 & draw on an Argand diagram. ( x 2) 2 y 2 3 z2 3 ( x 2)2 y 2 32 A circle, centre (2,0) and radius 3. x iy 2 3 ( x 2) iy 3 y z2 3 1 2 5 x ③ Find the equation of the locus when z 1 z 2i . z 1 z 2i x iy 1 x iy 2i ( x 1) iy x ( y 2)i ( x 1) y x ( y 2) 2 2 2 Im( z ) 2 ( x 1)2 y 2 x 2 ( y 2)2 x2 2 x 1 y 2 x2 y 2 4 y 4 1 2x 4 4 y 4 y 2x 3 1 3 y x 2 4 3 4 3 2 Re( z ) Questions a) Given that z x iy find the equation of each of the following loci and draw a representation of them on an Argand Diagram. i) z 5 ii) z 3 iii) z 1 4 iv) z 2i 3 v) z 2 z i vi) z 3 z 2i 8 The Fundamental Theorem of Algebra The Fundamental Theorem of algebra stares that if P( z ) z n an 1 z n 1 ... a2 z 2 a1 z a0 is a polynomial of degree n (with real or complex coeffiecients) then P ( z ) has n solutions 1 , 2 , 3 ,... n in the complex numbers & P( z ) ( z 1 )( z 2 )...( z n ) . i.e. a cubic equation has 3 roots, a quartic equation has 4 roots…etc. Also, if z x iy is a solution of P ( z ) , z will also be a solution (conjugate pairs are roots). Examples ① Find all solution of the equation z 3 z 2 z 2 0. 2 1 1 1 2 0 2 2 2 1 1 1 0 ( z 2) is a factor, z 2 is a solution. f ( z) ( z 2)( z 2 z 1) 1 12 4 1 1 2 1 3 z i 2 2 z 1 3 1 3 ,z i . Solutions are z 2, z i 2 2 2 2 ② f ( z ) 2 z 3 5z 2 8z 20 0. If z 2i is a factor, find all roots of the equation. z 2i is a factor z 2i is also a factor (the conjugate) ( z 2i )( z 2i ) f ( z ) ( z 2i)( z 2i)( z 2 4i 2 ( z 4)( 2 z2 4 ) ) Long Division will enable us to find the remaining factor. z 2 4 2z3 2z3 5 z 2 5z 2 5z 2 2z 5 8 z 20 8z 20 20 0 If the remainder is not 0 you have made a mistake. f ( z ) ( z 2i)( z 2i )(2 z 5) 5 z 2i, z 2i, z . 2 9 ③ f ( z ) z 3 z 2 z 15. If for f ( z ) 0, z 3 is a root, find the two remaining roots. 3 1 1 1 15 0 1 3 2 6 5 ( z 3) is a factor, z 3 is a solution. 15 0 2 22 4 1 5 2 z 1 2i z f ( z ) ( z 3)( z 2 z 5) 2 Solutions are z 3, z 1 2i, z 1 2i. ④ Past Paper 2002. Verify i is a solution of z 4 4 z 3 3z 2 4 z 2 0. Hence find all solutions. To verify either do synthetic division, or sub in solution and check you get 0 out. z 4 4 z 3 3z 2 4 z 2 i 4 4i 3 3i 2 4i 2 1 4(i) 3(1) 4(i) 2 0 ( z i )( z i ) i is a solution, i is also a solution (conjugate) f ( z ) ( z i )( z i )( z2 i2 ( z 1)( 2 z2 1 z2 1 z4 z4 4 z 3 4z3 4z3 z2 3 z 2 z2 2 z 2 4 z 2 4 z 2 2z2 2z2 2 2 4 z 2 4 z )( )( ) ) f ( z ) ( z i)( z i)( z 2 4 z 2) 0 4 42 4 1 2 2 z 2 2 z Solutions are z i, z i, z 2 2, z 2 2. 10 Multiplying & Dividing Numbers in Polar Form If we are multiplying two numbers in polar form we multiply the moduli & add arguments. If we are dividing two numbers in polar form we divide the moduli & subtract arguments. (Remember to always bring the argument back into the principle argument in the range ) Examples ① z 3 cos i sin ; w 4 cos i sin 3 3 2 2 zw 3 4 cos i sin 3 2 3 2 5 5 12 cos i sin 6 6 z 3 cos i sin w 4 3 2 3 2 3 cos i sin 4 6 6 3 cos i sin 4 6 6 ② z 2 cos i sin ; w 5 cos i sin 4 4 6 6 zw 2 5 cos i sin 4 6 4 6 5 5 10 cos i sin 12 12 z 2 cos i sin w 5 4 6 4 6 2 cos i sin 5 12 12 Questions Find zw & z if w z 2 cos i sin 3 3 (a) w 4 cos i sin 3 3 z 4 cos i sin 2 2 (b) w 2 cos i sin 3 3 11 z 5 cos i sin 4 4 (c) w 2 cos i sin 8 8 De Moivre’s Theorem By extending the results previous, we obtain the result commonly known as De Moivre’s Theorem. z n r n (cos n i sin n ) If z r (cos i sin ) Again we must remember to ensure we return our answer to having the principle argument. Examples ① If z 3 cos i sin find z 3 . 2 2 3 3 z 3 33 cos i sin 2 2 27 cos i sin 2 2 27 cos i sin 2 2 Subtract 2 to return to the principle arg. 3 3 4 i sin ②If z 2 cos find z . 4 4 z 4 24 cos3 i sin 3 16(cos i sin ) If we are given a complex number in Cartesian form, we can still use De Moivre’s Theorem by converting it into polar form (Using an Argand diagram to help.) Examples ① Find (1 i) 4 . r z 12 (1)2 r 2 Im( z ) tan 1 1 1 4 Arg z Re( z ) 1 12 3 4 4 Polar Form z r (cos i sin ) z4 3 3 2 cos i sin 4 4 3 3 2 cos i sin 4 4 ② Calculate 3 i 3 4 4(cos 3 i sin 3 ) 4(cos i sin ) by using De Moivre’s Theorem. 3 r z r2 Im( z ) 1 3 2 cos 124 i sin 124 2 12 1 3 6 tan Arg z Re( z ) 5 5 2 cos i sin 6 6 3i (1 i )3 4 . z1 3 i r z 3 2 12 tan 1 3 6 Arg z 6 r2 Im( z ) 1 5 6 15 15 z 23 cos i sin 6 6 5 5 8 cos i sin 2 2 8 cos i sin 2 2 Polar Form z r (cos i sin ) ③ Find 6 3 Re( z ) Polar Form z1 2 cos i sin 6 6 2 2 z14 16 cos i sin 3 3 13 z2 1 i tan r z 12 (1)2 4 Arg z 4 r 2 Im( z ) 1 1 1 Re( z ) 1 3 z23 2 2 cos 4 Polar Form z r (cos i sin ) 2 cos 4 3 i sin 4 i sin 4 Leave the argument as negative at this stage. z14 16 2 3 2 3 i sin cos 3 z2 2 2 3 4 3 4 8 17 17 i sin cos 12 12 2 7 7 4 2 cos i sin 12 12 7 7 4 2 cos i sin 12 12 Fractional Indices Fractional Indices may also be considered here, but we must be careful. We already know if 1 we find z 2 we have 2 solutions; solving z 3 for z should give 3 solutions, etc. To help achieve this we add multiples of 2 to the argument. z 2 cos Then 2 z cos 2k i sin 2k 3 3 3 i sin If we have 3 1 where k 0,1 (as this will give 2 solns) 14 By De Moivre’s Theorem 1 3 2 k 2 z 1 cos 2 When k 0 z0 cos 6 i sin 6 3 2 k i sin 2 When k 1 7 7 z1 cos i sin 6 6 5 5 cos i sin 6 6 In general 1 1 2 k z n r n cos n 2k i sin for k 0,1, 2,..., n 1. n You will need to remember this formula. Examples 3 3 i sin ① Considering z 3 8 cos 4 4 3 4 2 k z 8 cos 3 1 3 3 8k 2 cos 12 , find all possible results for z. 3 4 2 k i sin 3 3 8k i sin for k 0,1, 2 12 When k 0 z0 2 cos i sin 4 4 k 1 11 11 z1 2 cos i sin 12 12 k 2 19 19 z2 2 cos i sin 12 12 5 5 2 cos i sin 12 12 5 5 2 cos i sin 12 12 15 ② Solve z 3 8 cos i sin . 3 3 3 2 k z 8 cos 3 1 3 6k 2 cos 9 3 2 k i sin 3 6k i sin 9 for k 0,1, 2 When k 0 z0 2 cos i sin 9 9 k 1 7 7 z1 2 cos i sin 9 9 13 13 z2 2 cos i sin 9 9 5 5 2 cos i sin 9 9 5 5 2 cos i sin 9 9 k 2 Nth Roots of Unity Solving the equation z n 1 is a special case which gives solutions known as the nth roots of unity. These & the other roots previously calculated can be drawn on an Argand Diagram and evaluated geometrically. Examples ① Solve z 3 1 to find the cube roots of unity ( z 3 1(cos 0 i sin 0) . z 3 1(cos 0 i sin 0) 2k 2k z 1 cos i sin for k 0,1, 2. 3 3 1 3 16 When k 0 z0 1 cos 0 i sin 0 ( 1) for plotting k 1 z1 cos k 2 z2 cos 2 2 i sin 3 3 1 3 i 2 2 4 4 i sin 3 3 2 2 cos i sin 3 3 2 2 cos i sin 3 3 1 3 i 2 2 Im( z ) z1 z0 Re( z ) z2 ② Solve z 4 1 to find the fourth roots of unity. z 4 1(cos 0 i sin 0) 0 2k 0 2k z 14 cos i sin 4 4 k k cos i sin for k 0,1, 2,3. 2 2 1 When k 0 z0 1 cos 0 i sin 0 k 1 i ( 1) for plotting k 2 z1 cos z2 cos i sin k 3 1 z3 cos cos i 17 2 i sin 2 3 3 i sin 2 2 2 i sin 2 Im( z ) z1 z2 z0 Re( z ) z3 De Moivres’ Theorem & Multiple Angle Trigonometric Formulae Best shown by example. Examples ① Using De Moivre’s and the Binomial Theorem, express cos 4 as a polynomial in cos . By De Moivre cos i sin 4 cos 4 i sin 4 By Binomial Theorem cos i sin 4 cos 4 4i cos3 sin 6i 2 cos 2 sin 2 4i 3 cos sin 3 i 4 sin 4 cos 4 4i cos3 sin 6 cos 2 sin 2 4i cos sin 3 sin 4 cos 4 6 cos 2 sin 2 sin 4 i 4 cos3 sin 4 cos sin 3 Equating Real Parts gives us cos 4 cos 4 6 cos 2 sin 2 sin 4 (Note, equating imaginary parts would give sin 3 4 cos3 sin 4 cos sin 3 ) cos 4 cos4 6cos2 (1 cos2 ) (1 cos 2 )2 replacing all sin cos 6cos 6cos 1 2cos cos 4 4 2 4 8cos 4 8cos 2 1 18 2 ② Find a formula for cos3 in terms of powers of cos by using De Moivre’s Theorem. Hence express cos3 in terms of cos & cos3 . By De Moivre cos i sin 3 cos 3 i sin 3 By Binomial Theorem cos i sin 3 cos3 3i cos 2 sin 3i 2 cos sin 2 i 3 sin 3 cos3 3cos sin 2 i(3cos2 sin sin3 ) Equating Real Parts gives us cos 3 cos3 3cos sin 2 cos3 3cos (1 cos 2 ) 4 cos3 3cos 3 Hence cos ③ Express cos 3 3cos 4 sin 5 as a polynomial in sin . sin By De Moivre cos i sin 5 cos 5 i sin 5 By Binomial Theorem cos i sin 5 cos5 5i cos 4 sin 10i 2 cos3 sin 2 10i 3 cos 2 sin 3 5i 4 cos sin 4 i 5 sin 5 cos5 5i cos4 sin 10cos3 sin 2 10i cos 2 sin 3 5cos sin 4 i sin 5 cos5 10cos3 sin 2 5cos sin 4 i(5cos 4 sin 10cos 2 sin 3 sin 5 ) Equating Imaginary Parts sin 5 5cos 4 sin 10 cos 2 sin 3 sin 5 sin 5 5cos 4 10 cos 2 sin 2 sin 4 sin 5(1 sin 2 ) 2 10(1 sin 2 ) sin 2 sin 4 5 10sin 2 5sin 4 10sin 2 10sin 4 sin 4 16sin 4 20sin 2 5 19 Past Paper Questions 2001 (a) Given that 1 cos i sin , , state the value of . (b) Use de Moivre’s Theorem to find the non-real solutions, z1 and z 2 , of the equation z 3 1 0. Hence show that z12 z2 and z22 z1. (c) Plot all the solution of z 3 1 0 on an Argand diagram and state their geometrical significance. (1,5,2,3 marks) 2002 Verify that i is a solution of z 4 4 z 3 3z 2 4 z 2 0. Hence find all the solutions (5 marks) 2003 ① Identify the locus in the complex plane given by z i 2 (3 marks) 1 cos i sin . w Use de Moivre’s Theorem to prove wk w k 2cos k , where k is a natural number. ② Given that w cos i sin , show that Expand w w1 by the binomial theorem and hence show that 4 1 1 3 cos 4 cos 4 cos 2 . 8 2 8 (1, 3, 5 marks) 2004 Given z 1 2i, express z 2 ( z 3) in the form a ib. Hence, or otherwise, verify that 1 2i is a root of the equation z 3 3z 2 5 z 25 0. Obtain the other roots of this equation. (2, 2, 2 marks) 2005 ① Given the equation z 2iz 8 7i, express z in the form a ib. 20 (4 marks) ② Let z cos i sin . (a) Use the binomial expansion to express z 4 in the form u iv, where u and v are expression involving sin and cos . (b) Use de Moivre’s theorem to write down a second expression for z 4 . (c) Using the results of (a) and (b), show that cos 4 p cos 2 q sec2 r , where , 2 cos 2 2 stating the values of p , q and r. (3, 1, 6 marks) 2006 Express the complex number z i 1 in the form z x iy, stating the values of x 1 i and y. Find the modulus and argument of z and plot z and z on an Argand diagram. (3, 4 marks) 2007 ① Show that z 3 3i is a root of the equation z 3 18 z 108 0 and obtain the remaining roots of the equation. (4 marks) ② Given that z 2 z i , where z x iy, show that ax by c 0 for suitable values of a, b and c. Indicate on an Argand diagram the locus of complex numbers z which satisfy z 2 z i . (3, 1 marks) 2008 Given z cos i sin , use de Moivre’s theorem to write down an expression for z k in terms of , where k is a positive integer. 1 Hence show that k cos k i sin k . z Deduce expression for cos k and sin k in terms of z. 2 Show that cos 2 sin 2 1 2 1 z 2 . 16 z Hence show that cos2 sin 2 a b cos 4 , for suitable constants a and b. (3, 2, 3, 2 marks) 21 2009 (1 2i) 2 in the form a ib where a and b are real numbers. 7 1 Show z on an Argand diagram and evaluate z and arg( z ). Express z (6 marks) 2010 Given z r (cos i sin ), use de Moivre’s theorem to express z 3 in polar form. 2 2 Hence obtain cos i sin in the form a ib. 3 3 Hence, or otherwise, obtain the roots of the equation z 3 8 in Cartesian form. 3 Denoting the roots of z 3 8 by z1 , z 2 , z3 : (a) state the value z1 z2 z3 ; (b) obtain the value of z16 z26 z36 . (1, 2, 4, 3 marks) 2011 Identify the locus in the complex plane given by z 1 3. Show in a diagram the region given by z 1 3. (5 marks) 2012 ① Given that ( 1 2i ) is a root of the equation z 3 5z 2 11z 15 0, obtain all roots. Plot all the roots on an Argand diagram. (4, 2 marks) 22 ② (a) Prove by induction that (cos i sin )n cos n i sin n for all integers n 1. cos i sin 18 18 (b) Show that the real part of is zero. 4 cos i sin 36 36 11 (6, 4 marks) 2013 2 ① Given that z 1 3i, write down z and express z in polar form. (4 marks) ② Describe the loci in the complex plane given by: (a) z i 1; (b) z 1 z 5 . (2, 3 marks) 2014 (a) Express 1 as a complex number in polar form and hence determine the solutions to the equation z 4 1 0. (b) Write down the four solutions to the equation z 4 1 0. (c) Plot the solutions of both equations on an Argand diagram. (d) Show that the solutions of z 4 1 0 and the solutions of z 4 1 0 are also solutions of the equation z 8 1 0. (e) Hence identify all the solutions to the equation z 6 z 4 z 2 1 0. (3, 2, 1, 2, 2 marks) 2015 By writing z in the form x iy : (a) solve the equation z 2 z 4 ; 2 (b) find the solutions to the equation z 2 i z 4 . 2 23 (3, 4 marks) 2016 Let z 3 i. (a) Plot z on an Argand diagram. (b) Let w az where a 0, a . Express w in polar form. (c) Express w8 in the form ka n ( x iy), k , x, y . 24 (1, 2, 3 marks)