Download PROJECTILE MOTION Chapter 1.4

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PROJECTILE MOTION
Senior High School Physics
Lech Jedral
2006
Part 1.
Free powerpoints at http://www.worldofteaching.com
Part 2.
Introduction
 Projectile
Motion:
Motion through the air without a propulsion
 Examples:
Part 1.
Motion of Objects Projected
Horizontally
y
v0
x
y
x
y
x
y
x
y
x
y
•Motion is accelerated
•Acceleration is constant,
and downward
• a = g = -9.81m/s2
g = -9.81m/s2
•The horizontal (x)
component of velocity is
constant
•The horizontal and vertical
motions are independent of
each other, but they have a
x
common time
ANALYSIS OF MOTION
ASSUMPTIONS:
•
x-direction (horizontal):
uniform motion
•
y-direction (vertical):
accelerated motion
•
no air resistance
QUESTIONS:
•
What is the trajectory?
•
What is the total time of the motion?
•
What is the horizontal range?
•
What is the final velocity?
Frame of reference:
y
v0
g
h
0
Equations of motion:
X
Y
Uniform m.
Accel. m.
ACCL.
ax = 0
ay = g = -9.81
m/s2
VELC.
vx = v 0
vy = g t
x DSPL.
x = v0 t
y = h + ½ g t2
Trajectory
y
x = v0 t
y = h + ½ g t2
Eliminate time, t
t = x/v0
y = h + ½ g (x/v0)2
Parabola, open down
h
v01
v02 > v01
y = h + ½ (g/v02) x2
y = ½ (g/v02) x2 + h
x
Total Time, Δt
Δt = tf - ti
y = h + ½ g t2
y
final y = 0
0 = h + ½ g (Δt)2
Solve for Δt:
h
ti =0
Δt = √ 2h/(-g)
Δt = √ 2h/(9.81ms-2)
Total time of motion depends
only on the initial height, h
tf =Δt
x
Horizontal Range, Δx
x = v0 t
y
final y = 0, time is
the total time Δt
Δ x = v0 Δ t
h
Δt = √ 2h/(-g)
Δx = v0 √ 2h/(-g)
Horizontal range depends on the
initial height, h, and the initial
velocity, v0
Δx
x
VELOCITY
vx = v0
Θ
v = √vx
2
+ vy
2
= √v02+g2t2
tg Θ = v / v = g t / v
y x
0
vy = g t
v
FINAL VELOCITY
vx = v0
Δt = √ 2h/(-g)
v = √vx
2
+ vy
2
vy = g t
v = √v02+g2(2h /(-g))
v=√
v02+
2h(-g)
tg Θ = g Δt / v0
Θ
v
= -(-g)√2h/(-g) / v0
= -√2h(-g) / v0
Θ is negative
(below the
horizontal line)
HORIZONTAL THROW - Summary
h – initial height, v0 – initial horizontal velocity, g = -9.81m/s2
Trajectory
Half -parabola, open
down
Total time
Δt = √ 2h/(-g)
Horizontal Range
Δx = v0 √ 2h/(-g)
Final Velocity
v = √ v02+ 2h(-g)
tg Θ = -√2h(-g) / v0
Part 2.
Motion of objects projected at an
angle
y
vi
Initial position: x = 0, y = 0
Initial velocity: vi = vi [Θ]
viy
Velocity components:
x- direction : vix = vi cos Θ
θ
y- direction : viy = vi sin Θ
x
vix
y
a =g=
- 9.81m/s2
• Motion is accelerated
• Acceleration is constant, and
downward
•
a = g = -9.81m/s2
• The horizontal (x) component of
velocity is constant
• The horizontal and vertical
motions are independent of each
other, but they have a common
time
x
ANALYSIS OF MOTION:
ASSUMPTIONS
•
x-direction (horizontal):
uniform motion
•
y-direction (vertical):
accelerated motion
•
no air resistance
QUESTIONS
•
What is the trajectory?
•
What is the total time of the motion?
•
What is the horizontal range?
•
What is the maximum height?
•
What is the final velocity?
Equations of motion:
X
Uniform motion
ax = 0
Y
Accelerated motion
ay = g = -9.81 m/s2
VELOCITY
vx = vix= vi cos Θ
vx = vi cos Θ
vy = viy+ g t
vy = vi sin Θ + g t
DISPLACEMENT
x = vix t = vi t cos Θ y = h + viy t + ½ g t2
x = vi t cos Θ
y = vi t sin Θ + ½ g t2
ACCELERATION
Equations of motion:
X
Uniform motion
ax = 0
Y
Accelerated motion
ay = g = -9.81 m/s2
VELOCITY
vx = vi cos Θ
vy = vi sin Θ + g t
DISPLACEMENT
x = vi t cos Θ
y = vi t sin Θ + ½ g t2
ACCELERATION
Trajectory
x = vi t cos Θ
y = vi t sin Θ + ½ g t2
Parabola, open down
y
Eliminate time, t
t = x/(vi cos Θ)
vi x sin 
gx 2
y
 2
vi cos  2vi cos 2 
y  x tan  
g
2
x
2vi2 cos 2 
y = bx + ax2
x
Total Time, Δt
y = vi t sin Θ + ½ g t2
final height y = 0, after time interval Δt
0 = vi Δt sin Θ + ½ g (Δt)2
Solve for Δt:
0 = vi sin Θ + ½ g Δt
Δt =
x
2 vi sin Θ
(-g)
t=0
Δt
Horizontal Range, Δx
x = vi t cos Θ
y
final y = 0, time is
the total time Δt
Δx = vi Δt cos Θ
Δt =
2 vi sin Θ
(-g)
Δx =
x
sin (2 Θ) = 2 sin Θ cos Θ
2vi 2 sin Θ cos Θ
(-g)
0
Δx =
Δx
vi 2 sin (2 Θ)
(-g)
Horizontal Range, Δx
Δx =
Θ (deg) sin (2 Θ)
0
0.00
15
0.50
30
0.87
45
1.00
60
0.87
75
0.50
90
0
vi 2 sin (2 Θ)
(-g)
•CONCLUSIONS:
•Horizontal range is greatest for the
throw angle of 450
• Horizontal ranges are the same for
angles Θ and (900 – Θ)
Trajectory and horizontal range
g
2
y  x tan   2
x
2vi cos 2 
35
vi = 25 m/s
30
15 deg
30 deg
25
45 deg
20
60 deg
15
75 deg
10
5
0
0
20
40
60
80
Velocity
•Final speed = initial speed (conservation of energy)
•Impact angle = - launch angle (symmetry of parabola)
Maximum Height
vy = vi sin Θ + g t
y = vi t sin Θ + ½ g t2
At maximum height vy = 0
0 = vi sin Θ + g tup
tup =
vi sin Θ
(-g)
tup = Δt/2
hmax = vi t upsin Θ + ½ g tup2
hmax = vi2 sin2 Θ/(-g) + ½ g(vi2 sin2 Θ)/g2
hmax =
vi2 sin2 Θ
2(-g)
Projectile Motion – Final Equations
(0,0) – initial position, vi = vi [Θ]– initial velocity, g = -9.81m/s2
Trajectory
Total time
Horizontal range
Parabola, open down
Δt =
Δx =
2 vi sin Θ
(-g)
vi 2 sin (2 Θ)
(-g)
vi2 sin2 Θ
Max height
hmax =
2(-g)
PROJECTILE MOTION - SUMMARY
 Projectile
motion is motion with a constant
horizontal velocity combined with a constant
vertical acceleration
 The projectile moves along a parabola
Related documents