Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
PROJECTILE MOTION Senior High School Physics Lech Jedral 2006 Part 1. Free powerpoints at http://www.worldofteaching.com Part 2. Introduction Projectile Motion: Motion through the air without a propulsion Examples: Part 1. Motion of Objects Projected Horizontally y v0 x y x y x y x y x y •Motion is accelerated •Acceleration is constant, and downward • a = g = -9.81m/s2 g = -9.81m/s2 •The horizontal (x) component of velocity is constant •The horizontal and vertical motions are independent of each other, but they have a x common time ANALYSIS OF MOTION ASSUMPTIONS: • x-direction (horizontal): uniform motion • y-direction (vertical): accelerated motion • no air resistance QUESTIONS: • What is the trajectory? • What is the total time of the motion? • What is the horizontal range? • What is the final velocity? Frame of reference: y v0 g h 0 Equations of motion: X Y Uniform m. Accel. m. ACCL. ax = 0 ay = g = -9.81 m/s2 VELC. vx = v 0 vy = g t x DSPL. x = v0 t y = h + ½ g t2 Trajectory y x = v0 t y = h + ½ g t2 Eliminate time, t t = x/v0 y = h + ½ g (x/v0)2 Parabola, open down h v01 v02 > v01 y = h + ½ (g/v02) x2 y = ½ (g/v02) x2 + h x Total Time, Δt Δt = tf - ti y = h + ½ g t2 y final y = 0 0 = h + ½ g (Δt)2 Solve for Δt: h ti =0 Δt = √ 2h/(-g) Δt = √ 2h/(9.81ms-2) Total time of motion depends only on the initial height, h tf =Δt x Horizontal Range, Δx x = v0 t y final y = 0, time is the total time Δt Δ x = v0 Δ t h Δt = √ 2h/(-g) Δx = v0 √ 2h/(-g) Horizontal range depends on the initial height, h, and the initial velocity, v0 Δx x VELOCITY vx = v0 Θ v = √vx 2 + vy 2 = √v02+g2t2 tg Θ = v / v = g t / v y x 0 vy = g t v FINAL VELOCITY vx = v0 Δt = √ 2h/(-g) v = √vx 2 + vy 2 vy = g t v = √v02+g2(2h /(-g)) v=√ v02+ 2h(-g) tg Θ = g Δt / v0 Θ v = -(-g)√2h/(-g) / v0 = -√2h(-g) / v0 Θ is negative (below the horizontal line) HORIZONTAL THROW - Summary h – initial height, v0 – initial horizontal velocity, g = -9.81m/s2 Trajectory Half -parabola, open down Total time Δt = √ 2h/(-g) Horizontal Range Δx = v0 √ 2h/(-g) Final Velocity v = √ v02+ 2h(-g) tg Θ = -√2h(-g) / v0 Part 2. Motion of objects projected at an angle y vi Initial position: x = 0, y = 0 Initial velocity: vi = vi [Θ] viy Velocity components: x- direction : vix = vi cos Θ θ y- direction : viy = vi sin Θ x vix y a =g= - 9.81m/s2 • Motion is accelerated • Acceleration is constant, and downward • a = g = -9.81m/s2 • The horizontal (x) component of velocity is constant • The horizontal and vertical motions are independent of each other, but they have a common time x ANALYSIS OF MOTION: ASSUMPTIONS • x-direction (horizontal): uniform motion • y-direction (vertical): accelerated motion • no air resistance QUESTIONS • What is the trajectory? • What is the total time of the motion? • What is the horizontal range? • What is the maximum height? • What is the final velocity? Equations of motion: X Uniform motion ax = 0 Y Accelerated motion ay = g = -9.81 m/s2 VELOCITY vx = vix= vi cos Θ vx = vi cos Θ vy = viy+ g t vy = vi sin Θ + g t DISPLACEMENT x = vix t = vi t cos Θ y = h + viy t + ½ g t2 x = vi t cos Θ y = vi t sin Θ + ½ g t2 ACCELERATION Equations of motion: X Uniform motion ax = 0 Y Accelerated motion ay = g = -9.81 m/s2 VELOCITY vx = vi cos Θ vy = vi sin Θ + g t DISPLACEMENT x = vi t cos Θ y = vi t sin Θ + ½ g t2 ACCELERATION Trajectory x = vi t cos Θ y = vi t sin Θ + ½ g t2 Parabola, open down y Eliminate time, t t = x/(vi cos Θ) vi x sin gx 2 y 2 vi cos 2vi cos 2 y x tan g 2 x 2vi2 cos 2 y = bx + ax2 x Total Time, Δt y = vi t sin Θ + ½ g t2 final height y = 0, after time interval Δt 0 = vi Δt sin Θ + ½ g (Δt)2 Solve for Δt: 0 = vi sin Θ + ½ g Δt Δt = x 2 vi sin Θ (-g) t=0 Δt Horizontal Range, Δx x = vi t cos Θ y final y = 0, time is the total time Δt Δx = vi Δt cos Θ Δt = 2 vi sin Θ (-g) Δx = x sin (2 Θ) = 2 sin Θ cos Θ 2vi 2 sin Θ cos Θ (-g) 0 Δx = Δx vi 2 sin (2 Θ) (-g) Horizontal Range, Δx Δx = Θ (deg) sin (2 Θ) 0 0.00 15 0.50 30 0.87 45 1.00 60 0.87 75 0.50 90 0 vi 2 sin (2 Θ) (-g) •CONCLUSIONS: •Horizontal range is greatest for the throw angle of 450 • Horizontal ranges are the same for angles Θ and (900 – Θ) Trajectory and horizontal range g 2 y x tan 2 x 2vi cos 2 35 vi = 25 m/s 30 15 deg 30 deg 25 45 deg 20 60 deg 15 75 deg 10 5 0 0 20 40 60 80 Velocity •Final speed = initial speed (conservation of energy) •Impact angle = - launch angle (symmetry of parabola) Maximum Height vy = vi sin Θ + g t y = vi t sin Θ + ½ g t2 At maximum height vy = 0 0 = vi sin Θ + g tup tup = vi sin Θ (-g) tup = Δt/2 hmax = vi t upsin Θ + ½ g tup2 hmax = vi2 sin2 Θ/(-g) + ½ g(vi2 sin2 Θ)/g2 hmax = vi2 sin2 Θ 2(-g) Projectile Motion – Final Equations (0,0) – initial position, vi = vi [Θ]– initial velocity, g = -9.81m/s2 Trajectory Total time Horizontal range Parabola, open down Δt = Δx = 2 vi sin Θ (-g) vi 2 sin (2 Θ) (-g) vi2 sin2 Θ Max height hmax = 2(-g) PROJECTILE MOTION - SUMMARY Projectile motion is motion with a constant horizontal velocity combined with a constant vertical acceleration The projectile moves along a parabola