Download Partial Fraction Decomposition

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Partial Fraction
Decomposition
Sec. 7.4a
First, remind me……………………..…what’s a rational function?
f  x
y  x 
g  x
with
g  x  0
In this section, we will write a rational function as a sum of
rational functions where each denominator is a power of a
linear factor or a power of an irreducible quadratic factor.
Example:
3x  4 2
1
 
2
x  2x x x  2
Each fraction in the sum is a partial fraction, and the sum is
a partial fraction decomposition of the original rational
function.
Steps to Partial Fraction Decomposition of f(x)/d(x)
1. If the degree of f > degree of d: Divide f by d to obtain the
quotient q and the remainder r and write
f  x
d  x
 q  x 
r  x
d  x
2. Factor d(x) into a product of factors of the form
 ax
2

 bx  c , where ax  bx  c
v
2
 mx  n  or
 is irreducible
v
u
Steps to Partial Fraction Decomposition of f(x)/d(x)


3. For each factor mx  n : The partial fraction decomposition
of r(x)/d(x) must include the sum
u
A1
A2


2
mx  n  mx  n 
where
A1 , A2 ,

, Au

Au
 mx  n 
u
are real numbers

v
4. For each factor ax  bx  c : The partial fraction decomp.
of r(x)/d(x) must include the sum
2
B1 x  C1
B2 x  C2


2
2
ax  bx  c  ax 2  bx  c 
where
B1 , B2 ,
, BV
and
C1 , C2 ,

, Cv
Bv x  Cv
 ax
2
 bx  c 
v
are real numbers
Guided Practice
Write the terms for the partial fraction decomposition of the given
rational function. Do not solve for the corresponding constants.
5x 1
x 3  x  3  x 2  1
B1 x  C1
A1 A2 A3
A4
 2 3 +
+
2
x 1
x3
x x
x
Today, we’ll just focus on the
linear factors, like these…
Guided Practice
Find the partial fraction decomposition of the given function.
5x  1
2
x  2 x  15
Write the
partial fractions!
Factor the
denominator!
5x  1
 x  3 x  5
A1
A2
5x  1


 x  3 x  5 x  3 x  5
“Clear the fractions”
by multiplying everything
by the denominator!
5x 1  A1  x  5  A2  x  3
5 x  1  A1 x  5 A1  A2 x  3 A2
5x 1   A1  A2  x   5 A1  3 A2 
Guided Practice
Find the partial fraction decomposition of the given function.
5x  1
2
3


2
x  2 x  15
x 3 x 5
5x 1   A1  A2  x   5 A1  3 A2 
Equate the coefficients from
each side of the equation!
Solve the system!
(I don’t care how!!!)
A1  A2  5
5 A1  3 A2  1
A1  2 A2  3
Can we verify this answer algebraically? Graphically?
Guided Practice
Find the partial fraction decomposition of the given function.
5x  1
2
3


2
x  2 x  15
x 3 x 5
Another (easier?) way to
solve for the constants:
Plug in 5 for x, then
plug in –3 for x:
5x 1  A1  x  5  A2  x  3
A1  2 A2  3
Guided Practice
Find the partial fraction decomposition of the given function.
x  2x  4
A3
A2
 x  2 x  4 A1
 


3
2
2
2
x  4x  4x
x
x

2
x  x  2
 x  2
2
2
Clear fractions:
 x  2 x  4  A1  x  2   A2 x  x  2   A3 x
2
2
Expand and combine like terms:
 x2  2x  4   A1  A2  x2   4 A1  2 A2  A3  x  4 A1
Guided Practice
Find the partial fraction decomposition of the given function.
x  2x  4
1 2
2
 

3
2
x  4 x  4 x x x  2  x  2 2
2
 x2  2x  4   A1  A2  x2   4 A1  2 A2  A3  x  4 A1
Compare coefficients:
A1  A2  1
4 A1  2 A2  A3  2
4 A1  4
Solve the system:
A1  1 A2  2 A3  2
Guided Practice
Find the partial fraction decomposition of the given function.
x  2x  4
1 2
2
 

3
2
x  4 x  4 x x x  2  x  2 2
2
The other way to solve for the A’s:
 x  2 x  4  A1  x  2   A2 x  x  2   A3 x
2
Use x = 2, solve for A 3
Use x = 0, solve for A 1
Use any other x, solve for A 2
A1  1 A2  2 A3  2
2
More PFD:
Denominators with
Irreducible
Quadratic Factors
Now let’s apply a similar process
when working with irreducible
quadratic factors…
(see “Step 4” in your notes
from the previous slides!!)
Find the partial fraction decomposition of
A
Bx  C
x  4x 1

 2
3
2
x  x  x 1 x 1 x  1
2
Factor the denominator by grouping:
x  x  x  1  x  x 1   x  1   x  1  x 2  1
3
2
2
Clear fractions:
x  4 x  1  A  x  1   Bx  C  x  1
2
2
Expand and combine like terms:
x  4 x  1   A  B  x   B  C  x   A  C 
2
2
Find the partial fraction decomposition of
3
2 x  2
x  4x 1

 2
3
2
x  x  x 1 x 1 x  1
2
x  4 x  1   A  B  x   B  C  x   A  C 
2
2
Compare coefficients:
A B 1
B  C  4
AC 1
Solve the system:
A  3 B  2 C  2
Find the partial fraction decomposition of
2 x  x  5x
3
2
x
2
 1
2
B1 x  C1 B2 x  C2
 2

2
2
x  1  x  1
Clear fractions:
2 x  x  5 x   B1 x  C1   x  1  B2 x  C2
3
2
2
Expand and combine like terms:
2 x  x  5x  B1x  C1x   B1  B2  x  C1  C2 
3
2
3
2
Find the partial fraction decomposition of
2 x  x  5x
3
2
x
2
 1
2
2x 1
3x  1
 2

2
2
x  1  x  1
2 x  x  5x  B1x  C1x   B1  B2  x  C1  C2 
3
2
3
2
B1  2 C1  1
B1  B2  5 C1  C2  0
 B2  3 C2  1
Compare coefficients:
Find the partial fraction decomposition of
3x 2  4
x
2
 1
2
B1 x  C1 B2 x  C2
 2

2
2
x  1  x  1
Clear fractions:
3x  4   B1 x  C1   x  1  B2 x  C2
2
2
Expand and combine like terms:
3x2  4  B1 x3  C1 x2   B1  B2  x  C1  C2 
Find the partial fraction decomposition of
3x 2  4
x
2
 1
2
3
1
 2

2
2
x  1  x  1
3x  4  B1 x  C1 x   B1  B2  x  C1  C2 
2
3
2
B1  0 C1  3
B1  B2  0 C1  C2  4
 B2  0 C2  1
Compare coefficients:
Related documents