Download Seminar PowerPoint

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Evolution and Outflows of
Hyper-Accreting Disks
Brian Metzger, UC Berkeley
with Tony Piro, Eliot Quataert & Todd Thompson
Metzger, Thompson & Quataert (2007), ApJ, 659, 561
Metzger, Quataert & Thompson (2008), MNRAS, 385, 1455
Metzger, Thompson & Quataert (2008), ApJ, 676, 1130
Metzger, Piro & Quataert (2008a), MNRAS in press
Metzger, Piro & Quataert (2008b), In preparation
Outline
 Introduction
 Compact Object Mergers and White Dwarf AIC
 Short GRBs: Recent Advances and New Puzzles
 Hyper-Accreting Disk Models
 One-Zone “Ring” Model
 1D Height-Integrated Model
 Disk Outflows and Nucleosynthesis
 Neutrino-Driven Winds (Early Times)
 Viscously-Driven Winds (Late Times)
 Conclusions
Compact Object Mergers (NS-NS or BH-NS)
Lattimer & Schramm 1974, 1976; Paczynski 1986; Eichler et al. 1989
t = 0.7 ms
“Chirp”
Shibata & Taniguchi 2006
t = 3 ms
• Inspiral + NS Tidal Disruption
– Primary Target for Advanced LIGO / VIRGO
•
•
•
•
Disk Forms w/ Mass ~ 10-3 - 0.3 M and Radius ~10-100 km
Hot ( kT > MeV) and Dense ( ~ 108-1012 g cm-3) Midplane
Cooling via Neutrinos: ( >>1,  ~ 0.01-100 )
Ý ~ 102 10M s-1  GRB Progenitor?
Accretion Rate M
Accretion-Induced
Collapse
Nomoto & Kondo 1991; Canal 1997
• Electron Capture (24Mg  20Ne  20O)
Faster than Nuclear Burning  O-Ne-Mg
White Dwarf Core Destabilized
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
Dessart+06
776 ms post bounce
Md ~ 0.1 M Disk
Forms Around NS
Gamma-Ray Bursts: Long & Short Duration
BATSE GRBs
Long
• High Redshift: <z> ~ 2
• Large Energies (Eiso~1052-54 ergs)
• Star Forming Hosts
• Type Ibc Broad-Line Supernovae
Nakar 07
2
Short
1 H 
t visc 
 
K R 
1/ 2
M BH  0.1 R 3 / 2 H /R 2
 0.4 s 
 

  
3M    100 km   0.2 
Short GRB Host Galaxies
GRB050709
GRB050509b
Bloom+ 06
z = 0.16
SFR = 0.2 M yr-1
z = 0.225
SFR < 0.1 M yr-1
KECK Bloom+06
HUBBLE Fox+05
GRB050724
Berger +05
z = 0.258
SFR < 0.03 M yr-1
Berger+05
Short GRB Host Galaxies
GRB050709
GRB050509b
Bloom +06
z = 0.16
SFR = 0.2 M yr-1
No SN!
(But Some Radioactive
Ejecta Expected…)
z = 0.225
SFR < 0.1 M yr-1
KECK Bloom+06
HUBBLE Fox+05
• Lower z
• Eiso~ 1049-51GRB050724
ergs
Berger +05•
Older Progenitor
GRB050724
Population
z = 0.258
SFR < 0.03 M yr-1
Berger+05
Short GRBs with
Extended Emission
GRB050709
Who Ordered
That?!
- Regular ~ 30-100 s Duration
- Energy Often Exceeds GRB’s
- ~25% of Swift Short Bursts
BATSE Examples
Late-Time Flaring
(Norris & Bonnell 2006)
GRB050724
XRT, Campana+06
A “Ring” Model of Hyper-Accreting Disks
Metzger, Piro & Quataert 2008a
MÝ
BH
Vr < 0
Vr > 0
rd
Ý
• Mass at large radii ~ rd controls disk evolution and sets M

• Model enforces mass & angular momentum conservation
• Thermal Balance:
dS
T
 qÝvisc  qÝ
dt
qÝvisc 

9 2
 ,
4
Md
tvisc (rd )
 =  cs H
• Calculates {, T, H} @ rd(t) GIVEN rd,0, Md,0, MBH, and 

Simple model
 allows wide exploration of parameter space:
Initial disk mass/radius, viscosity , outflows, etc.
Three Phases of
Hyper-Accreting
Disks
2
3
1
Ý Thick Disk: H ~ R
1) High M
-
Optically Thick Matter Accretes Before Cooling
2) Neutrino-Cooled Thin Disk: H ~ 0.2 R

-
Ý c2
Optically Thin, Neutrino Luminosity L ~ 0.1 M
Ion Pressure Dominated / Mildly Degenerate e  p    n
e
Neutron-Rich Composition (n/p ~ 10)

Ý Thick Disk: H ~ R
3) Low M
-

e  n  e  p
Neutrino Cooling << Viscous Heating 

Radiation Pressure-Dominated / Non-Degenerate
Example Ring Model Solution
.
0.1 Mdc2 (1051 ergs)
T (MeV)
rd (km)

M (M s-1)
MBH = 3 M Md,0 = 0.1 M rd,0 = 30 km  = 0.1 tvisc,0 ~ 3 ms
Mdt-1/3
tthick
Late-Time Thick Disk Outflows
Advective disks are only marginally bound. When the disk cannot cool, a
powerful viscously-driven outflow blows it apart (Blandford & Begelman 1999).
Only a small fraction
of ingoing matter
actually accretes
onto black hole
BH
Hawley & Balbus 2002
QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.
Nuclear energy from
-particle formation
also sufficient to
unbind disk
Effect of the Thick Disk Wind
Late-Time Short
GRB Activity
tthick?
• XRBs Make Radio Jets Upon Thermal (Thin Disk)
 Power-Law (Thick Disk) Transition
(e.g. Fender +99; Corbel + 00; Fender, Belloni, & Gallo 04; Gallo +04)
• Extended Emission = Thick Disk Transition?
• Problem: Requires Very Low Viscosity  ~ 10-3
23/17
tTHICK

  
~ 0.1 s  
0.1
 M d ,0   rd ,0 9 / 34 M BH 
 

 

0.1M  100 km 3M 
9 /17
1/ 2
Other Sources of Extended Emission
Lee & Ramirez-Ruiz 07
Tidal Tail Fallback
Rosswog 06, Lee & Ramirez-Ruiz 07
Magnetar Spin-Down
Following AIC
P0= 1 ms
1016 G
GRB060614 Overlaid
Metzger, Quataert & Thompson 08

NS

EÝ

Ýc 2
M
High 
3 1015 G
Low 
1015 G
Disk Outflows & Heavy Element Synthesis
• GRB Jets Require Low Density, but High Density Outflows
Probably More Common  Heavy Element Formation
{n, p}   ' s  C  Fe - group  r - process?
12
• EBIND ~ 8 MeV nucleon-1  vOUT ~ 0.1-0.2 c
• Which Heavy Isotopes are Produced Depends on:
Electron Fraction Ye = np/(nn+np)
Ye
Product Nuclei
0.48 - 0.6 Mostly Ni56 - Ideal 9 Day Decay Time
0.4 - 0.48 Rare Neutron-Rich Isotopes (58Fe, 54Cr, 50Ti, 60Zn)
0.3 - 0.4
Very Rare Neutron-Rich Isotopes (78,80,82Se, 79Br)
< 0.3
r-Process Elements (e.g. Ag, Pt, Eu)
(Ye = 0.88)
(Ye ~ 0.5)
Rare Neutron-Rich
Isotopes (Ye ~ 0.3 - 0.4)
2nd/3rd Peak r-Process
(Ye < 0.3)
(Ye < 0.2)
Atomic Number (A)
Neutrino Heated Winds
Burrows, Hayes, & Fryxell 1995
Original Application: Core-Collapse Supernovae
(Duncan+ 84; Qian & Woosley 96; Thompson+ 01)
t = 0.5 s
Emergence of the
Proto-Neutron Star Wind
 e  n  e  p



p

e
n
e
• Neutrinos Heat & Unbind Matter from NS:
• Electron Fraction at  set by Neutrinos
n
p
– EBIND = 150 MeV, E ~ 15 MeV

 ~ 10 Neutrino Absorptions per Nucleon
NÝe  e n Le Ee
n


Ý
p
N e   e p L e E e
n
p
n
1
 L E


Ye  Ye  1 e e

L
E
 e  e 

Neutrino-Driven Accretion Disk Winds
Levinson 06; Metzger, Thompson & Quataert 08
GMmn


IF
 E  THEN Ye  Ye
2R
GMmn
disk

IF
 E  THEN Ye  Ye
2R

Ýc2
L ~ 0.1 M
ÝWind (R), Ye
M
Yedisk ~ 0.1
BH

Neutrino Luminosities L
e
/L e and Mean Energies E e /Ee
Ý
Calculated Using a Steady - State Disk Model Given M
disk
56Ni
Production in Neutrino-Driven Winds
1
rd
56Ni
10-1
GMmp/2R < E
Optically Thin @ RISCO
GMmp/2R > E
Accretion Rate (M s-1)
Optically Thick @ RISCO
Neutron-Rich
Isotopes
10-2
1
10
Wind Launching Radius (RISCO)
Metzger, Piro & Quatert 2008
Neutron-Rich Isotopes
Mini-Supernovae Following Short GRBs
Li & Paczynski 1998; Kulkarni 2005; Metzger, Piro & Quataert 2008a
Total 56Ni Mass Integrated
Over Disk Evolution:
(MNi ~ 10-3 M and Mtot ~ 10-2 M)
GRB050509b
(Hjorth +05)
V
J
Optical / IR Follow-Up  Initial Disk Properties
Metzger, Piro & Quataert 2008a
Metzger, Piro & Quataert 2008a
BH spin a = 0.9
Mini-SN Light Curve
Summary So Far
Neutrino-Cooled Thin Disk Phase
-
Neutron-Rich Midplane (Ye ~ 0.1)
-
Neutrino-Driven Wind  Up To ~ 10-3 M in 56Ni
 Mini-SN
(+ even more neutron-rich matter from larger radii)
Late-Time Thick Disk Phase
-
Viscously-Driven Wind Disrupts Disk
-
Disk Composition?? Wind Composition??
Late-Time Disk Composition:
Metzger, Piro & Quataert 2008b
Disk Thickening  Weak Freeze-Out
The Thick Disk Transition
Degeneracy
Pair Captures:
e  p   e  n
e   n  e  p
H/R
Yeeq
Ye


Both Cool Disk AND
Change Ye
Weak Freeze Out  Non-Degenerate Transition
 Moderately Neutron-Rich Freeze-Out (Ye ~ 0.25 - 0.45)
1D Height-Integrated Disk Calculations
Equations
Md,0 = 0.1 M, rd,0 = 30 km,  = 0.3
Local Disk Mass r2 (M)
Angular Momentum /
Continuity
Entrop
y
Heating
Cooling
Nuclear Composition
QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.
Weak Freeze-Out
(A “Little Bang”)
Weak Interactions
Drive Ye  Yeeq
Until Freeze-Out
Electron Fraction
Ye
Yeeq
QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.
Thickening / Freeze-Out Begins at the Outer Disk and Moves Inwards
Neutron-Rich Freeze-Out Is Robust
M per bin
M0 = 0.1 M,  = 0.3
Mtot = 0.02 M
M0 = 0.1 M,  = 0.03
Mtot = 0.02 M
M per bin
M0 = 0.01 M,  = 0.3
Mtot= 2 10-3 M
 ~10 - 30% of Initial
Disk Ejected Into ISM
with Ye ~ 0.2-0.4
Production of Rare Neutron-Rich Isotopes
Hartmann +85
40 Million Times
Solar Abundance!!!
0.35 < Ye < 0.4
 78,80,82Se, 79Br
Ye = 0.5
=1-2Ye
Ye = 0.4
Ye = 0.35
Merger Rates and the Short GRB Beaming Fraction
Metzger, Piro & Quataert 2008b
1
 M d ,0 



5
1
1
NÝmax ~ 10   
 yr galaxy
0.2  0.1M 

1
From known merging NS
systems, Kim+06 estimate:
NÝNSNS = 3 105  2 104 yr -1

Milky Way Short GRB Rate ~ 10-6 yr-1 (Nakar 07)

   M d ,0 
NÝSGRB
fb 
 0.13  

Ý
0.2 0.1M 
N
 max
Jet Opening Angle  > 300
Short GRBs Less Collimated than Long GRBs (LGRB~2-100)

(Grupe +06; Soderberg +06)
Timeline of Compact Object
Mergers
1)
2)
3)
Inspiral, Tidal Disruption & Disk Formation (t ~ ms)
Optically-Thick, Geometrically-Thick Disk (t ~ ms)
Geometrically-Thin Neutrino-Cooled Disk (t ~0.1-1 s)
- Up to ~ 10-3 M in 56Ni from neutrino-driven winds (mini-SN)
4)
Radiatively Inefficient Thick Disk (t > 0.1-1 s)
- Degenerate  Non-Degenerate
- PGAS-Dominated  PRAD-Dominated
- Neutron-Rich Freeze-Out
Disk Blown Apart by Viscously-Driven Outflow
- Creation of Rare Neutron-Rich Elements (“Little Bang”)
From AIC Disk Winds
 Neutrino absorptions don’t affect Ye
strongly in compact merger disks
 BUT In AIC, e “flash” from shock
break-out can drive Ye > 0.5
e  n  e  p

Freeze-Out Ye in AIC Disk
With e Flash
Neutrino Luminosity (ergs s-1)
56Ni

Dessart+ 06
L e
“Flash”
Le
Time After Core Bounce (s)

 Winds synthesize ~10-2 M in 56Ni
 Optical Transient Surveys:
~ few yr-1 Pan-STARRs & PTF
No e Flash
~ 100’s yr-1 LSST
 Neutron-rich material also
synthesized?  unusual spectral
lines? (e.g, Zn, Ge, Cu?)
Conclusions
 Isolated Disk Evolution Cannot Explain Late-Time
X-Ray Emission (unless  ~ 10-3)
 Promising alternatives: Tidal tail fall-back and
magnetar spin-down
 Neutrino-driven winds create up to ~10-3M in 56Ni
 Mini-SN at t ~ 1 day
 Neutron-Rich Nucleosynthesis
 CO merger rate: < 10-5 yr-1 (Md,0/0.1 M)-1
 Short GRB jet opening angle:  > 30(Md,0/0.1 M)1/2
 ~10-2 M in 56Ni from White Dwarf AIC
 Target for upcoming optical transient surveys
Future Progress
Observations
Gravitational Waves
(LIGO; VIRGO)
Short GRB Optical / IR
Follow-Up
Spectroscopy of MetalPoor Halo Stars
Optical Transient
Surveys
Theory
MHD Disk Simulations:
Freeze-Out and LateTime Winds
Neutron-Rich
Nucleosynthesis
Compact Object
Merger Simulations
Spectra of Neutron-Rich
Explosions
Late-Time Optical Rebrightening: Mini-Supernova?
GRB060614; Mangano+07
Merger Rates and the GRB Beaming Fraction
• If a fraction  ~ 0.1 of initial disk mass is ejected with Ye < 0.4 per event:
X 
NÝ   M d,0 X  t galaxy
M ISM
From known merging NS
systems, Kim+06 estimate:
For tgalaxy = 10 Gyr and MISM = 109 M:
NÝNSNS = 3 105  2 104 yr -1
Milky Way Short GRB Rate ~ 10-6 yr-1 (Nakar 07)

Jet Opening Angle  > 100
Short GRBs Less Collimated than Long GRBs (LGRB~2-100)
Related documents