Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
If none of the angles of a triangle is a right angle, the triangle is called oblique. To solve an oblique triangle means to find the lengths of its sides and the measurements of its angles. All angles are acute Two acute angles, one obtuse angle A FOUR CASES CASE 1: One side and two angles are known (SAA or ASA). CASE 2: Two sides and the angle opposite one of them are known (SSA). CASE 3: Two sides and the included angle are known (SAS). S A ASA S A CASE 4: Three sides are known (SSS). S A SAA CASE 1: ASA or SAA S A A S S CASE 2: SSA CASE 3: SAS 1 S S S The Law of Sines is used to solve triangles in which Case 1 or 2 holds. That is, the Law of Sines is used to solve SAA, ASA or SSA triangles. CASE 4: SSS Proof (one case) Theorem Law of Sines a b For a triangle with sides a , b, c and opposite angles α , β ,γ , respectively, h α sin α sin β sin γ = = a b c sin α = β opp h = , so h = b sin α hyp b sin β = opp h = , so h = a sin β hyp a h = b sin α = a sin β sin α sin β = a b Solve the triangle: α = 30o , β = 70o , a = 5 (SAA) o 30 α + β + γ = 180o b γ c α + β + γ = 180o 30o + 70o + γ = 180o γ = 80o sin 30o sin 70o sin 30o sin 80o = = 70o b 5 c 5 5 o o 5 sin 80 5 sin 70 b= ≈ 9.40 c = ≈ 9.85 o sin 30o sin 30 2 Solve the triangle: α = 20o , β = 60o , c = 12 (ASA) 20o α + β + γ = 180o 20o + 60o + γ = 180o b 12 60o γ = 100o γ o o sin 20o sin 100o sin 60 = sin 100 = 12 b a 12 o 12 sin 60 12 sin 20o ≈ 10.55 a= ≈ 4.17 b = o sin 100o sin 100 a o o sin 132.5 sin 30 = 5 a a= 5 sin 132.5o ≈ 7.37 sin 30o a ≈ 7.37, b = 5, c = 3 α ≈ 132.5o , β = 30o ,γ ≈ 17.5o Solve the triangle: b = 5, c = 3, β = 30o (SSA) o 30 3 α a γ 5 sin 30o sin γ = 5 3 3 sin 30o sin γ = = 0.3 5 γ 1 ≈ 17.5o γ 2 ≈ 162.5o β + γ 2 = 30o + 162.5o = 192.5o > 180o α = 180o − 30o − 17.5o ≈ 132.5o Solve the triangle: b = 8, c = 10, β = 45o (SSA) sin 45o sin γ = 8 10 10 sin 45o sin γ = ≈ 0.88 8 γ 1 ≈ 62.1o or γ 2 ≈ 117.9o 45o + 62.1o < 180o 45o + 117.9o < 180o Two triangles!! Triangle 1: γ 1 ≈ 62.1o o Triangle 2: γ 2 ≈ 117.9 α1 = 180o − 45o − 62.1o ≈ 72.9o α 2 = 180o − 45o − 117.9o ≈ 17.1o sin 72.9o sin 45o = 8 a1 sin 17.1o sin 45o = 8 a2 o 8 sin 17.1 a2 = ≈ 3.33 sin 45o a1 = 8 sin 72.9 ≈ 10.81 sin 45o a1 ≈ 10.81, b = 8, c = 10 a2 ≈ 3.33, b = 8, c = 10 α1 ≈ 72.9o , β = 45o , γ 1 ≈ 62.1o α 2 ≈ 17.1o , β = 45o , γ 2 ≈ 117.9o 3 Solve the triangle: c = 5, b = 3, β = 50o (SSA) sin 50o sin γ = 3 5 5 sin 50o sin γ = 3 3 5 50o a sin γ ≈ 128 . No triangle with the given measurements! 4