Download 1 i

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Lesson 2.4
Complex Numbers
Imaginary Numbers
 What
is the square root of 9?
9  3 because 3 3  9
 What
is the square root of -9?
9  ?
Imaginary Numbers
 The
constant, i, is defined as the
square root of negative 1:
i  1
Imaginary Numbers
 The
square root of -9 is an imaginary
number...
9  9  1  3 i  3i
Imaginary Numbers
 Simplify
these radicals:
36x
2
20y
3
2 4 7
5a b c
 6ix
 2iy 5y
2 3
 iab c
5c
Multiples of i

Consider multiplying two imaginary numbers:
3i  5i

2
So... i  1
Multiples of i
 Powers
of i:
i
i  1
2
i  i  i  1 i  i
3
2
i  i i  1 1  1
4
2
2
Powers of i - Practice
28
i
1
75
i
-i
113
i
i
86
i
-1
1089
i
i
Solutions Involving i
Solve:
4 x  36  0
2
Complex Numbers
 Have
a real and imaginary part .
 Write complex numbers as a + bi
 Examples: 3 - 7i, -2 + 8i, -4i, 5 + 2i
Add & Subtract
 Like
Terms
 Example:
(3 + 4i) + (-5 - 2i) = -2 + 2i
Practice
Add these Complex Numbers:
 (4
+ 7i) - (2 - 3i)
 (3 - i) + (7i)
 (-3 + 2i) - (-3 + i)
= 2 +10i
= 3 + 6i
=i
Multiplying
 FOIL and
replace i2 with -1:
4  2i 1  3i 
Practice
Multiply:
 5i(3
 (7
- 4i)
- 4i)(7 + 4i)
= 20 + 15i
= 65
Division
 Rationalize
any fraction with i in
the denominator.
Monomial
Denominator:
2  8i
3i
Binomial
Denominator:
8i
1  3i
Rationalizing
 Monomial:
bottom by i.
2  8i
3i
multiply the top &
Complex #: Rationalize

Binomial: multiply the numerator and
denominator by the conjugate of the
denominator ...
8i 1  3i

1  3i 1  3i
8i 1  3i
8i  24i


2
1  3i 1  3i 1 3i  3i  9i
24  8i 12  4i


10
5
2
Practice
 Simplify:
5i
4i
2  3i
2 i
5
3  4i
1  5i

4
1  8i

5
3  4i

5
Related documents