Download MTH55_Lec-58_sec_9-2a_Composite_Fcns

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chabot Mathematics
§9.2a
Composite Fcns
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
Chabot College Mathematics
1
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Review § 9.1
MTH 55
 Any QUESTIONS About
• §9.1 → The NATURAL Base, e
 Any QUESTIONS About HomeWork
• §9.1 → HW-43
Chabot College Mathematics
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Composite Functions
 In the real world, functions
frequently occur in which some
quantity depends on a variable that,
in turn, depends on another
variable.
 Functions such as these are called
COMPOSITE FUNCTIONS
Chabot College Mathematics
3
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Composing a Function
 Composition with sets A & B by fcns g & f
g
f
A
B
1
f ( x)  x  3
2
C
1
3
7
4
10
22
−1
2
8
g ( x)  3 x  1
h
Chabot College Mathematics
4
h(x) = ?
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
g ( x)  3x  1
A
Composing a Function
f ( x) 
B
4
-1
3
10
2
7
22
8
 From The Diagram notice that since
f takes the output from g we can
combine f and g to get a function h:
f (g (x)) = f (3x + 1)
1
 (3x  1)  3
2
3
5
 x
2
2
3
5
 This Yields an eqn for h: h( x)  x  .
2
2
5
C
1
h
Chabot College Mathematics
1
x 3
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
h(x) = ?
Composing a Function
g ( x)  3x  1
f ( x) 
1
x 3
2
A
B
1
4
-1
3
10
2
7
22
8
h
C
3
5
h( x )  x  .
2
2
h(x) = ?
 The function h is the composition of
f and g and is denoted f○g (read “the
composition of f and g,” “f composed
with g,” or “f circle g”).
Chabot College Mathematics
6
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
COMPOSITION OF FUNCTIONS
 If f and g are two functions, the
composition of function f with function g
is written as f○g and is defined by the
equation
 f og x   f g x ,
 The function where the domain of f○g
consists of those values x in the domain
of g for which g(x) is in the domain of f
Chabot College Mathematics
7
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
COMPOSITION OF FUNCTIONS
 Graphically the f○g Domain Chain
Chabot College Mathematics
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
COMPOSITION OF FUNCTIONS
 Conceptually the f○g Operation Chain
Chabot College Mathematics
9
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Evaluate Composites
 Given: f x   x 3 and g x   x  1.
 Find Each of the Following
a.  f og 1
b. g o f 1
c.  f o f 1
d. g og 1
 Solution a.a.  f og 1  f g 1
 f 2 
 23
Chabot College Mathematics
10
8
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Evaluate Composites
 Solution b.
b. g o f 1  g  f 1
f x   x 3 and g x   x  1.
 g 1  1  1  2
 Solution c.  f o f 1  f  f 1
 f 1  1  1
3
 Solution d.
d. g og 1  g g 1
 g 0   0  1  1
Chabot College Mathematics
11
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Fcn Composition
 Given f(x) = 4x and g(x) = x2 + 2, find
f
g  ( x) and  g f  ( x).
 SOLUTION
f
g  ( x)  f ( g ( x)) = f (x2 + 2)
= 4(x2 + 2)
= 4x2 + 8
Chabot College Mathematics
12
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Fcn Composition
 Given f(x) = 4x and g(x) = x2 + 2, find
f
g  ( x) and  g f  ( x).
 SOLUTION
g
f  ( x)  g ( f ( x)) = g(4x)
= (4x)2 + 2
= 16x2 + 2
 This example shows
that in general  f g  ( x)   g f  ( x).
Chabot College Mathematics
13
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Fcn Composition
 Given: f x   2x  1 and g x   x  3.
2
 Find Each Composite Function
a.  f og x 
b. g o f x 
c.  f o f x 
a.  f og x   f g x 

 2 x

 3 1
 f x2  3
 Solution a.
2
 2x  6  1
2
 2x  5
2
Chabot College Mathematics
14
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Fcn Composition
 Given: f x   2x  1 and g x   x  3.
2
 Solution
 f og
x  b.b. g o f x  c.  f o f x 
b. g o f x   g  f x 
 g 2x  1
2
2
 2x  1  3  4x  4x  2
Chabot College Mathematics
15
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Fcn Composition
 Given: f x   2x  1 and g x   x  3.
2
g o f Solution
x  c.c.  f o f x 
c.  f o f x   f  f x 
 f 2x  1
 2 2x  1  1  4 x  3
Chabot College Mathematics
16
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Composite Domain
1
Let f x   x  1 and g x   .
 Given:
x
a. Find  f og 1.
b. Find g o f 1.
c. Find  f og x  and its domain.
d. Find g o f x  and its domain.
 Solution
a.  f og 1  f g 1
a.
 f 1  1  1  0
Chabot College Mathematics
17
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Composite Domain
1
Let f x   x  1 and g x   .
 Given:
x
 Solution
b. g o f 1  g  f 1
b.
 g 0  not defined
 1 1
c.  f og x   f g x   f     1
 Soln
 x x
c.
• Domain: (−∞, 0)U(0, ∞) or {x|x ≠ 0}
Chabot College Mathematics
18
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Composite Domain
1
Let f x   x  1 and g x   .
 Given:
x
1
d. g o f x   g  f x   g x  1 
 Soln
x

1
d.
• Domain: (−∞, −1)U(−1, ∞) or {x|x ≠ −1}
Chabot College Mathematics
19
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
DEcomposing a Function
Let H x  
 Given:
1
.
2x  1
 Show that each of the following
provides a DEcomposition of H(x)
2
a. Express H x  as f g x ,
1
where f x  
and g x   2x 2  1.
x
b. Express H x  as f g x ,
1
where f x   and g x   2x 2  1.
x
Chabot College Mathematics
20
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Decomposing a Function
Let
 Solution: a. Express H x  as f g x ,
1
H x  
.
1
2
2x  1 where f x  

and g x   2x 2  1.
x

a. f g x   f 2x  1

2
1
2x  1
 H x 
Chabot College Mathematics
21
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Decomposing a Function
Let
 Solution: b. Express H x  as f g x ,
1
H x  
.
1
2
2x  1
where f x  
b. f g x   f

Chabot College Mathematics
22
x
and g x   2x 2  1.
 2x  1
2
1
2x  1
 H x 
2
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Automobile Sales

A car dealer offers an 8% discount off
the manufacturer’s suggested retail
price (MSRP) of x dollars for any new
car on his lot. At the same time, the
manufacturer offers a $4000 rebate on
the purchase.
a. Write a function f(x) that represents the
price after the rebate.
b. Write a function g(x) that represents the
price after the dealer’s discount.
Chabot College Mathematics
23
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Automobile Sales
c. Write the Functions (f○g)(x) & (g○f)(x).
What do these Functions Represent?
d. Calculate (g○f)(x) − (f○g)(x). Interpret this
odd-looking expression
 Solution a.
The MSRP is x dollars, rebate is $4k, so
f(x) = x – 4000
represents the price of the car after
the rebate.
Chabot College Mathematics
24
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Automobile Sales
 Solution b.
The dealer’s discount is 8% of x, or 0.08x,
so:
g(x) = x – 0.08x = 0.92x
represents the price of the car after the
dealer’s discount.
c. c.(i)  f og x   f g x   f 0.92x 
 Soln
 0.92x  4000
• This represents the price when the
DEALER’S discount is is applied first.
Chabot College Mathematics
25
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Automobile Sales
 Solution c. (cont.)
(ii)
g o f x   g  f x  g x  4000 
 0.92 x  4000 
 0.92x  3680
• This represents the price when the
MANUFACTURER’S rebate is applied first.
Chabot College Mathematics
26
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Example  Automobile Sales
 Solution d.
g o f x    f og x   g  f x  f g x 
 0.92x  3680   0.92x  4000 
d.
 320 dollars
• This equation shows that it will cost $320
MORE for any car, regardless of its price, if
you apply the rebate first and then the
discount second.
Chabot College Mathematics
27
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
WhiteBoard Work
 Problems From §9.2 Exercise Set
• 10, 12, 56, 58, 70
 Composition of Functions Corresponds
to a Production Line
Chabot College Mathematics
28
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
All Done for Today
Function
Machines
&
CoDomain
Chabot College Mathematics
29
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Chabot Mathematics
Appendix
r  s  r  s r  s 
2
2
Bruce Mayer, PE
Licensed Electrical & Mechanical Engineer
[email protected]
–
Chabot College Mathematics
30
Bruce Mayer, PE
[email protected] • MTH55_Lec-58_sec_9-2a_Composite_Fcns.ppt
Related documents