Download Section 4.5

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
4.5
Integration by Substitution
Antidifferentiation of a Composite Function
Let f and g be functions such that f og and g’ are
continuous on an interval I. If F is an antiderivative
of f on I, then
Inside

f ( g ( x)) g ' ( x)dx  F ( g ( x))  C
Outside
Derivative
of Inside
 x
Evaluate
2
 1 2x dx
2
du
 u 2x 2x
3

2
3
x  1
u

 C 
C
3
3
2
Evaluate
 5 cos 5 x dx
du
 5 cos u
5
 sin u  C  sin 5x  C
Let u = x2 + 1
du = 2x dx
du
 dx
2x
Let u = 5x
du = 5 dx
du
 dx
5
Multiplying and dividing by a constant
 xx
2
 1 dx
2
x  1
du u

 C 
  xu 
C
2x
6
6
2

3
2
3
du
1 2 du
 u
u
2
2
2 x 1dx  

32
32
1 2u
2x 1


C 
C
2 3
3
Let u = x2 + 1
du = 2x dx
du
 dx
2x
Let u = 2x - 1
du = 2dx
du
 dx
2
Substitution and the General Power Rule
What would you let u = in the following examples?
 3(3x  1) dx
 2 x  1x  x  dx
 3x x  2 dx
4
2
2
3
 4x
dx
2
1 2x


 cos x sin x dx
2
u = 3x - 1
u = x2 + x
u = x3 - 2
u = 1 – 2x2
u = cos x
A differential equation, a point, and slope field are given. Sketch
the solution of the equation that passes through the given point.
Use integration to find the particular solution of the differential
equation. dy
2
3
2
dx

x 2 x 3 1 dx
2
du
x u 3x 2
2

2
 x (x 1)
u  x 3 1
du  3x 2 dx
du
 dx
2
3x
x 1

u du u
 C
C
3
9
9
2
3
1,0
3
3
13 1
3
0
C
3
x 1

9
y
C0
9
QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.
Day 1 stop (1-41 odd)
x
2
3
u = x3
sin x dx
du = 3x2 dx
du
  x sin u du
 dx
2
2
3x
3x
1
1
  sin u du  ( cos u )  C
3
3
2
1
3
  cos x  C
3
 sin 3x cos 3x dx
Let u = sin 3x
du = 3cos 3x dx
 sin 3x cos3x dx
du
 dx
3 cos 3 x
2
rewritten as
2
  u cos 3 x
2
du
3 cos 3x
1 2
  u du
3
sin 3 3x
u3
C
 C 
9
9
Day 2 stop (43-56 all, 57-61 odd)
Evaluate
u = x2 + 1
du = 2x dx
1
 x( x
2
 1) dx
3
0
du
  x(u )
2x
3
2
u 
 
8 1
4
16 1 15
  
8 8 8
du
 dx
2x
Note that there are no upper and lower
limits of integration.
We must determine new upper and
lower limits by substituting the old
ones in for x in u = x2 + 1
Or, we could use the old limits if we
substitute x2 + 1 back in.
4 1

x  1
16 1 15


  

8 8 8
8 
0
2
Integration of Even and Odd Functions
If f is an even function, then
2
a

a
a
f ( x)dx  2 f ( x)dx
0
Ex.
 x dx  0
3
2
Odd or Even?
If f is an odd function, then
a
 f ( x)dx  0
a
Homework
• Page 304
• 7-19 odd, 43-46 all, 71-75 odd, 93-97 odd
(calculator), 101, 102
Related documents