Download 6-2 Angles in Polygons

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
AP Honors Contemporary Topics of Math
Unit 6 – More Geometry
Name ___________________
Date ___________ Period ___
6–2
Angles in Polygons
Triangle Sum Theorem – The sum of the three interior angles of a triangle
is 180º
Find the value of x .
x
x
1.
2.
60°
3.
60°
40°
55°
x
4.
5.
x
x +10
75°
6.
65°
50°
x
x
50°
112°
x
Quadrilateral Sum Theorem – The sum of the four interior angles of any quadrilateral
is 360º
Find the value of x .
7.
75°
8.
60°
2x - 10
105°
9.
x
135°
2x +20
55°
x
x
Properties of Parallelograms – Opposite angles of parallelograms are congruent;
Consecutive angles of parallelograms are supplementary.
Find the value of x for each parallelogram.
2x
10.
11.
100°
12.
75°
x
5x - 24
2x +30
B
C
39º
Use the parallelogram at the right to find the indicated measures.
13. mC  __________
15. mADC  __________
14. mBDA  __________
A
16. mABD  __________
72º
Choices for #13 to #17:
a) 36º
b) 69º
d) 111º
e) 108º
ac) 42
ad) 53
17. mBDC  __________
D
c) 72º
ab) 39º
ae) 19
Sums of the Interior Angles of Regular Polygons –
Formula S  180(n  2) if n = number of sides.
18.
a)
b)
c)
d)
20.
Find the sum of the interior angles
of an octagon. (8 sides).
720°
900°
1080°
1260°
19.
a)
b)
c)
d)
Find the measure of the interior angle, x,
of the regular hexagon. (6 sides).
21.
Find the sum of the interior angles
of a pentagon. (5 sides).
540°
480°
520°
450°
Find the measure of the interior angle, x,
of a decagon. (10 sides).
x
a)
b)
c)
d)
80°
100°
120°
144°
a)
b)
c)
d)
80°
100°
120°
144°
22.
The measure of one interior angle of a
regular polygon is 150º. Using this
measurement, the polygon has how
many sides?
23.
Find the measure of one exterior angle of
a regular hexagon.
?
a)
b)
c)
d)
8
10
12
15
a)
b)
c)
d)
30°
45°
60°
20°
Find the equation of the line that contains the given two coordinates.
Write the equation in the form y = m x + b .
24. ( -4 , 15 ) and ( 2 , -9 )
a)
b)
c)
d)
y  0.25 x  16
y  0.25 x  14
y  4 x  31
y  4 x  1
Solve the system of equations.
2 x  y  7
x  3y  7
25.
a)
b)
c)
d)
(
(
(
(
-4 , 0 )
1 , -2 )
-3 , -1 )
-2 , 3 )
Related documents