Download Population and Sample Means

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Population and Sample Means
X


i
N
Slide 12.1A
Population and Sample Means
X


i
N
X

X
i
n
Slide 12.1
Mean Advantages and Disadvantages
Advantages
 commonly understood
 all data have one descriptive mean
Disadvantages
 extreme scores distort mean
 tedious if computed by hand
Slide 12.2
SAMPLE DATA and the Mean
1
3
X

X
i
n
5
5
7
9
Slide 12.3A
SAMPLE DATA and the Mean
1
3
5
X

X
i
n
1 3  5  5  7  9
X
6
5
7
9
Slide 12.3B
SAMPLE DATA and the Mean
1
3
5
X

X
i
n
1 3  5  5  7  9
X
6
5
7
9
Slide 12.3C
SAMPLE DATA and the Mean
1
3
5
5
7
X

X
i
n
1 3  5  5  7  9
X
6
30
X
6
9
Slide 12.3D
SAMPLE DATA and the Mean
1
3
5
5
7
X

X
i
n
1 3  5  5  7  9
X
6
30
X
6
5
9
Slide 12.3
Median Advantages and
Disadvantages
Advantages
 not distorted by extreme scores
 useful to detect deviations from
normal distributions
Disadvantages
 may be tedious to find by hand
Slide 12.4
Mode Advantages and Disadvantages
Advantages
 not distorted by extreme scores
 useful for both qualitative and
quantitative data
Disadvantages
 data may not have a true mode
 useless if many modes
Slide 12.5
Assessing Dispersion by
Looking at Spread
Data
2
Mean = 5
5
8
Slide 12.6A
Assessing Dispersion by
Looking at Spread
Data
2
5
8
Mean = 5
How far from the
mean are the data?
Slide 12.6
Starting to Assess the Variance
s
2
X


i
X

n 1
2 -5 =-3
5 -5 = 0
8 -5 = 3
Slide 12.7
2
A Formula to Assess the
Variance
s
2
X


i
X

2
n 1
2 -5 =-3
9
5 -5 = 0
0
8 -5 = 3
9
Slide 12.8A
A Formula to Assess the
Variance
s
2
X


9
5 -5 = 0
0
8 -5 = 3
X  X
9
18
2
s2 
n 1
X

n 1
2 -5 =-3
i
i
2
=
Slide 12.8B
A Formula to Assess the
Variance
s
X


2
9
5 -5 = 0
0
8 -5 = 3
X  X
9
18
2
s2 
n 1
X

n 1
2 -5 =-3
i
i
2
=
9
2 18
Slide 12.8C
A Formula to Assess the
Variance
s
2
X


9
5 -5 = 0
0
8 -5 = 3
X  X
2
s2 
n 1
X

n 1
2 -5 =-3
i
i
2
=
9
18
9
2 18
THE VARIANCE
Slide 12.8
Sample and Population
Standard Deviations
s 
X
i
 X
n 1
Slide 12.9A

2
Sample and Population
Standard Deviations
s 
 
X
 X
i

2
n 1
X
 
i
N
Slide 12.9
2
SAMPLE AND POPULATION TERMS
Sample
Population
Slide 12.10A

SAMPLE AND POPULATION TERMS



n
Sample
Mean
Population
X

XX  
i
i
N
Slide 12.10B
2

SAMPLE AND POPULATION TERMS



Sample
Mean
Variance
Population
X
2

XX i  


X 
X  X
n


2
s 
s 
i
2
2
N n
1
i
2
Slide 12.10C
i

n 1

SAMPLE AND POPULATION TERMS



Sample
Mean
Variance
Standard
Deviation
Population
X
2

XX i   2



X

X

X
n


i
i
2
2
2
s 
s 
i


N 
n X
1
n 1 Xi 
s
 

n 1
Slide 12.10
Standard Normal Curve


X



2
-3
i
N
=0
= 1 
Slide 12.11
+3

z Scores when Data Do Not Already Have a
Mean of 0 and a Standard Deviation of 1
z
X 

Slide 12.12A
z Scores when Data Do Not Already Have a
Mean of 0 and a Standard Deviation of 1
z
or
X 

XX
z
s
Slide 12.12
Areas under the Standard
Normal Curve
z = -1.67
z=1
0
Slide 12.13
Areas under the
Standard Normal Curve
z = -1.75
z = 1.75
0
Slide 12.14
Areas under the
Standard Normal Curve
z=1
0
Slide 12.15
Correlation Example
Speaking Skill
Writing Skill
X
Y
1
3
2
4
3
7
4
5
5
6
Slide 12.16A
Correlation Example
Speaking Skill
X
XX
Writing Skill
Y
Y Y
1
-2
3 -2
2
-1
4 -1
3
0
7
2
4
1
5
0
5
2
6
1
Slide 12.16B
Correlation Example
Speaking Skill
X
XX
Writing Skill
Y
Y Y
XX
*
1
-2
3 -2
4
2
-1
4 -1
1
3
0
7
2
0
4
1
5
0
0
5
2
6
1
2
Slide 12.16C
Y Y
Correlation Example
Speaking Skill
X
XX
Writing Skill
Y
Y Y
XX
*
1
-2
3 -2
4
2
-1
4 -1
1
3
0
7
2
0
4
1
5
0
0
5
2
6
1
2
Slide 12.16D
  X  X  Y  Y 
Y Y
=7
Correlation Example
Speaking Skill
X
XX
Writing Skill
Y
Y Y
XX
*
1
-2
3 -2
4
2
-1
4 -1
1
3
0
7
2
0
4
1
5
0
0
5
2
6
1
2
Slide 12.16
  X  X  Y  Y 
n-1
Y Y
=7
=4
Correlation Computation
7
 1. 75
4
r
s X * sY
Slide 12.17A
Correlation Computation
7
 1. 75
4
r
s X * sY
Slide 12.17B
Correlation Computation
7
 1. 75
4
r
s X * sY
1. 75
r
1.58 *1.58
1. 75
r
. 70
2.5
Slide 12.17C
Correlation Computation
7
 1. 75
4
r
s X * sY
1. 75
r
1.58 *1.58
1. 75
r
. 70
2.5
Slide 12.17D
Correlation Computation
7
 1. 75
4
r
s X * sY
1. 75
r
1.58 *1.58
1. 75
r
. 70
2.5
Slide 12.17
Related documents