Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Implicit Differentiation and Parametric Equations Answers 1. Differentiates w.r.t. x to give 3x2, 2x dy dy + 2y, 4 + 3y2 =0 dx dx M1, B1, A1 At (4, 3) 48 (8y + 6) 4 + 27y = 0 M1 38 = 2 19 A1 y = Gradient of normal is y 3 = i.e. 1 2 M1 1 (x 4) 2 M1 2y 6 = x 4 x – 2y + 2 = 0 A1 8 [8] 2. dy dy 2y 6y 2x + 2 x =0 dx dx dy = 0 x + y = 0 (or equivalent) dx Eliminating either variable and solving for at least one value of x or y. y2 – 2y2 – 3y2 + 16 = 0 or the same equation in x y = 2 or x = 2 (2 – 2), (–2, 2) dy x y Note: dx 3 y x M1 (A1) A1 M1 M1 A1 A1 7 Alternative: 3y2 – 2xy – (x2 + 16) = 0 y= 2 x (16 x 2 192 ) 6 dy 1 1 8x . dx 3 3 (16 x 2 192 ) dy =0 dx 8x (16 x 2 192 ) 64x2 = 16x2 + 192 x = 2 (2, –2), (–2, 2) M1 A1 A1 = 1 M1 M1 A1 A1 7 [7] Glyn Technology School 1 3. (a) (b) dy dy ), –6y =0 dx dx dy dy At (1 , 2) 10 + (4 + 2 ) – 12 =0 dx dx 7 dy 14 or 1 52 = 1.4 or 5 dx 10 10x, +(2y + 2x The gradient of the normal is M1, (B1), A1 M1 A1 5 7 M1 5 (x – 1) 7 (allow tangent) Its equation is y – 2 = y= 5 M1 5 5 5 19 x + 2 or y = x + 7 7 7 7 A1cao 3 [8] 4. (a) dx = sin t, dt (b) 2 cos 2t = 0 dy = 2 cos 2t dt 2 cos 2t dy = sin t dx M1 A1 A1 3 2t = 3 5 7 , , , 2 2 2 2 M1 So t = 3 5 7 , , , 4 4 4 4 A1 A1 3 1 1 , 1) ,1) 2 2 M1 A1 2 (c) 1 1 ,1) , 1) 2 2 (d) y = 2 sin t cos t = 2 1 cos t cos t = 2x 1 x 2 (e) M1 2 y = 2x 1 x 2 M1 A1 3 B1 1 [12] 5. (a) 3( x 1) A B , and correct method for finding A or B ( x 2)( x 1) x 2 x 1 A = 1, B = 2 (b) f(x) = M1 A1, A1 1 2 2 ( x 2) ( x 1) 2 Argument for negative, including statement that square terms are positive for all values of x. (f.t. on wrong values of A and B) 3 M1 A1 A1 ft 3 [6] 6. (a) (b) dy dx = –2cosec2 t, = 4 sin t cos t dt dt dy 2 sin t cos t (= –2sin3 t cos t) 2 dx cosec t At t = , x = 2, y = 1 4 both M1 A1 M1 A1 4 B1 both x and y Glyn Technology School 2 Substitutes t = dy into an attempt at to obtain gradient 4 dx 1 (x – 2) 2 Accept x + 2y = 4 or any correct equivalent Equation of tangent is y – 1 = – (c) 1 2 M1 M1 A1 Uses 1 + cot2 t = cosec2 t, or equivalent, to eliminate t 4 M1 2 2 x 1+ y 2 correctly eliminates t A1 8 4 x2 The domain ir x…0 y= cao A1 B1 4 Alternative for (c): 1 1 x x y 2 y 2 sin t = ; cos t = sin t 2 22 2 2 y x y sin2 t + cos2 t = 1 =1 2 4 2 8 Leading to y = 4 x2 M1 A1 A1 [12] 7. (a) dx 1 dy 1 and 2 dt dt (1 t ) 2 (1 t ) dy (1 t ) 2 and at t = ½, gradient is –9 dx (1 t ) 2 M1 requires their dy/dt / their dx/dt and substitution of t. 2 and y = 2 3 2 Equation is y – 2 = -9 (x – ) 3 B1, B1 M1 A1cao At the point of contact x = (b) B1 M1 A1 1 1 – 1 or t = 1 – (or both) x x Then substitute into other expression y = f(x) or x = g(y) and rearrange 1 1 (or put 1 1 and rearrange) x y Either obtain t in terms of x and y i,e, t = To obtain y = x (*) 2x 1 1 (1 t ) x Or Substitute into 2 2x 1 1 1 t Glyn Technology School 7 M1 M1 a1 3 M1 3 1 1 2 (1 t ) 1 t = y (*) 1 x Area = dx 2x 1 2 = (c) A1 M1 3 B1 3 = u 1 du 1 1 1 du 2u 2 4 u putting into a form to integrate M1 1 1 1 = u ln u 4 4 1 M1 A1 3 1 1 1 1 = ln 4 12 4 3 1 1 = ln 3 or any correct equivalent. 6 4 M1 A1 6 [16] 1 Or Area = x 2x 1 dx B1 2 3 = 1 1 2 dx 2 2x 1 putting into a form to integrate M1 1 1 1 = x ln( 2 x 1) 4 2 2 M1 A1 3 = 1 1 1 1 1 1 1 ln ln 2 3 4 3 6 4 3 Or Area = = 1 1 1 t (1 t ) A B 2 dM1 A1 dt C (1 t ) (1 t ) (1 t ) 2 6 B1 dt M1 putting into a form to integrate 1 1 1 = ln(1 t ) ln(1 t ) (1 t ) 1 4 2 4 = Using limits 0 and ½ and subtracting (either way round) 1 1 = ln3 or any correct equivalent. 6 4 1 Or Area = x 2x 1 dx then use parts M1 a1ft dM1 A1 6 B1 2 3 1 = 1 1 x ln( 2 x 1) (2 x 1) dx 2 2 2 M1 3 Glyn Technology School 4 1 1 1 x ln( 2 x 1) (2 x 1) ln( 2 x 1) x 2 2 4 1 1 1 1 1 1 = ln ln 2 3 3 12 3 3 1 1 1 = ln 6 4 3 = 8. (a) dy y 3 dx x 2t DM1 A1 6 M1 2t 3 Gradient of normal is M1 At P t = 2 B1 4 Gradient of normal @ P is 3 A1 Equation of normal @ P is y –9 = (b) M1A1 4 (x – 5) 3 M1 Q is where y = 0 x = 27 47 (o.e.) 5 4 4 A1 Curved area = ydx = y dx dt dt M1 = 3(1 + b).2t dt = [3t2 + 2t3] Curve cuts x-axis when t = –1 Curved area = [3t2 + 2t3] 21 = (12 + 16) – (3 – 2) (= 27) 6 A1 M1A1 B1 M1 P 1 ((a) – 5) × 9 (= 30.375) 2 Total area of R = curved area + = 57.375 or AWRT 57.4 Area of Q triangle = M1 M1 A1 9 [15] 9. (a) dx a sec t tan t dt B1 dy b sec2 t dt B1 dy b sec 2 t b cosec t dx a sec t tan t a (b) At t x a 2 , y b; 4 y b b 2 a M1 A1 dy b 2 dx a 4 B1B1 x a 2 M1 A1 4 b 2x y b a [8] Glyn Technology School 5