Download Implicit Differentiation and Parametric Equations

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Implicit Differentiation and Parametric
Equations Answers
1.
Differentiates w.r.t. x to give
3x2,  2x
dy
dy
+ 2y, 4 + 3y2
=0
dx
dx
M1, B1, A1
At (4, 3)
48  (8y + 6)  4 + 27y = 0
M1
38
= 2
19
A1
 y = 
Gradient of normal is
y  3 =
i.e.
1
2
M1
1
(x  4)
2
M1
2y  6 = x  4
x – 2y + 2 = 0
A1
8
[8]
2.
dy
 dy

 2y  6y
2x +  2 x
=0
dx
 dx

dy
= 0  x + y = 0 (or equivalent)
dx
Eliminating either variable and solving for at least one value of x or y.
y2 – 2y2 – 3y2 + 16 = 0 or the same equation in x
y = 2 or x = 2
(2 – 2), (–2, 2)
dy x  y
Note:

dx 3 y  x
M1 (A1) A1
M1
M1
A1
A1
7
Alternative:
3y2 – 2xy – (x2 + 16) = 0
y=
2 x  (16 x 2  192 )
6
dy 1 1
8x
  .
dx 3 3 (16 x 2  192 )
dy
=0
dx
8x
(16 x 2  192 )
64x2 = 16x2 + 192
x = 2
(2, –2), (–2, 2)
M1 A1  A1
= 1
M1
M1 A1
A1
7
[7]
Glyn Technology School
1
3.
(a)
(b)
dy
dy
), –6y
=0
dx
dx
dy
dy
At (1 , 2) 10 + (4 + 2 ) – 12
=0
dx
dx
7
dy 14

or 1 52
 = 1.4 or
5
dx 10
10x, +(2y + 2x
The gradient of the normal is 
M1, (B1), A1
M1
A1
5
7
M1
5
(x – 1)
7
(allow tangent)
Its equation is y – 2 = 
y= 
5
M1
5
5
5
19
x + 2 or y =  x +
7
7
7
7
A1cao
3
[8]
4.
(a)
dx
=  sin t,
dt
(b)
2 cos 2t = 0
dy
= 2 cos 2t
dt
2 cos 2t
dy
=
 sin t
dx
M1 A1 A1
3
2t =
 3 5 7
,
,
,
2
2
2 2
M1
So t =
 3 5 7
,
,
,
4
4
4 4
A1 A1
3

 1
  1
 
,  1) 
,1)   
2
2  


M1 A1
2
(c)
 1
  1


,1)  
,  1) 

 2   2
(d)
y = 2 sin t cos t
= 2 1  cos t cos t = 2x 1  x
2
(e)

M1
2
y = 2x 1  x 2
M1 A1
3
B1
1
[12]
5.
(a)
3( x  1)
A
B
, and correct method for finding A or B


( x  2)( x  1) x  2 x  1
A = 1, B = 2
(b)
f(x) = 
M1
A1, A1
1
2

2
( x  2)
( x  1) 2
Argument for negative, including statement that square terms
are positive for all values of x. (f.t. on wrong values of A and B)
3
M1 A1
A1 ft
3
[6]
6.
(a)
(b)
dy
dx
= –2cosec2 t,
= 4 sin t cos t
dt
dt
dy  2 sin t cos t
(= –2sin3 t cos t)

2
dx
cosec t
At t =

, x = 2, y = 1
4
both M1 A1
M1 A1
4
B1
both x and y
Glyn Technology School
2
Substitutes t =
dy

into an attempt at
to obtain gradient
4
dx
1
(x – 2)
2
Accept x + 2y = 4 or any correct equivalent
Equation of tangent is y – 1 = –
(c)
 1
 
 2
M1
M1 A1
Uses 1 + cot2 t = cosec2 t, or equivalent, to eliminate t
4
M1
2
2
 x
1+   
y
 2
correctly eliminates t
A1
8
4  x2
The domain ir x…0
y=
cao A1
B1
4
Alternative for (c):
1
1
x
x  y 2
 y 2
sin t =   ; cos t = sin t   
2
22
2
2
y x
y
sin2 t + cos2 t = 1  
 =1
2
4 2
8
Leading to y =
4  x2
M1 A1
A1
[12]
7.
(a)
dx
1
dy
1
and


2
dt
dt (1  t ) 2
(1  t )

dy  (1  t ) 2
and at t = ½, gradient is –9

dx
(1  t ) 2
M1 requires their dy/dt / their dx/dt and
substitution of t.
2
and y = 2
3
2
Equation is y – 2 = -9 (x – )
3
B1, B1
M1 A1cao
At the point of contact x =
(b)
B1
M1 A1
1
1
– 1 or t = 1 –
(or both)
x
x
Then substitute into other expression y = f(x) or x = g(y) and rearrange
1
1
(or put  1  1  and rearrange)
x
y
Either obtain t in terms of x and y i,e, t =
To obtain y =
x
(*)
2x  1
1
(1  t )
x
Or Substitute into

2
2x  1
1
1 t
Glyn Technology School
7
M1
M1
a1
3
M1
3
1
1

2  (1  t ) 1  t
= y (*)
1
x
Area = 
dx
2x  1
2
=
(c)
A1
M1
3
B1
3
=

u  1 du 1
1

1  du
2u 2 4
u
putting into a form to integrate

M1
1
1
1

=  u  ln u 
4
4
1
M1 A1
3
1  1 1 1
=    ln 
4  12 4 3 
1 1
=  ln 3 or any correct equivalent.
6 4
M1
A1
6
[16]
1
Or Area =
x
 2x  1 dx
B1
2
3
=

1
1
 2 dx
2 2x  1
putting into a form to integrate
M1
1
1
1

=  x  ln( 2 x  1)
4
2
2
M1 A1
3
=
1 1 1 1 1 1 1
  ln   ln
2 3 4 3 6 4 3
Or Area =
=
1
1
 1  t (1  t )
A
B
2
dM1 A1
dt
C
 (1  t )  (1  t )  (1  t )
2
6
B1
dt
M1
putting into a form to integrate
1
1
1

=  ln(1  t )  ln(1  t )  (1  t ) 1 
4
2
4

= Using limits 0 and ½ and subtracting (either way round)
1 1
=  ln3 or any correct equivalent.
6 4
1
Or Area =
x
 2x  1 dx then use parts
M1 a1ft
dM1
A1
6
B1
2
3
1
=
1
1
x ln( 2 x  1) 
(2 x  1) dx
2
2
2

M1
3
Glyn Technology School
4
1
1 
1
x ln( 2 x  1)   (2 x  1) ln( 2 x  1)  x
2
2 
4
1 1 1 1 1 1
=   ln  ln  
2  3 3 12 3 3 
1 1 1
=  ln
6 4 3
=
8.
(a)
dy y 3
 
dx x 2t
DM1
A1
6
M1
2t
3
Gradient of normal is 
M1
At P t = 2
B1
4
Gradient of normal @ P is 
3
A1
Equation of normal @ P is y –9 = 
(b)
M1A1
4
(x – 5)
3
M1
Q is where y = 0  x =
27
47
(o.e.)
5
4
4
A1
Curved area = ydx = y
dx
dt
dt
M1
= 3(1 + b).2t dt
= [3t2 + 2t3]
Curve cuts x-axis when t = –1
Curved area = [3t2 + 2t3] 21 = (12 + 16) – (3 – 2) (= 27)
6
A1
M1A1
B1
M1
P
1
((a) – 5) × 9 (= 30.375)
2
Total area of R = curved area + 
= 57.375 or AWRT 57.4
Area of
Q
triangle =
M1
M1
A1
9
[15]
9.
(a)
dx
 a sec t tan t
dt
B1
dy
 b sec2 t
dt
B1
dy
b sec 2 t
b

 cosec t
dx a sec t tan t a
(b)
At t 

x  a 2 , y  b;
4
 y  b  b
2
a
M1 A1
dy b 2

dx
a
4
B1B1
x  a 2 
M1 A1
4
b 2x
y
b
a
[8]
Glyn Technology School
5
Related documents