Download Chapter 4 Section 1 - Columbus State University

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Applications of Differentiation
Section 4.1
Maximum and
Minimum Values
Applications of Differentiation
 Maxima and Minima
 Applications of Maxima and Minima
Absolute Extrema
Let f be a function defined on a domain D
Absolute
Maximum
Absolute
Minimum
Absolute Extrema
A function f has an absolute (global) maximum at
x = c if f (x)  f (c) for all x in the domain D of f.
The number f (c) is called the absolute maximum
value of f in D
Absolute
Maximum
f (c )
c
Absolute Extrema
A function f has an absolute (global) minimum at
x = c if f (c)  f (x) for all x in the domain D of f.
The number f (c) is called the absolute minimum
value of f in D
c
f (c )
Absolute
Minimum
Generic Example
y
8
7
6
5
4
3
2
1
x
-3
-2
-1
1
-1
2
3
4
5
6
Generic Example
y
8
7
6
5
4
3
2
1
x
-3
-2
-1
1
-1
2
3
4
5
6
Generic Example
y
8
7
6
5
4
3
2
1
x
-3
-2
-1
1
-1
2
3
4
5
6
Relative Extrema
A function f has a relative (local) maximum at x  c if
there exists an open interval (r, s) containing c such
that f (x)  f (c) for all r  x  s.
Relative
Maxima
Relative Extrema
A function f has a relative (local) minimum at x  c if
there exists an open interval (r, s) containing c such
that f (c)  f (x) for all r  x  s.
Relative
Minima
Fermat’s Theorem
If a function f has a local maximum or minimum at c,
and if f (c ) exists, then f (c)  0
Proof:
Assume f has a maximum
f (c  h )  f (c )
f (c)  lim
h 0
h
f (c  h )  f (c )
 lim
h 0
h
f (c  h )  f (c )
 lim
h 0
h
f ( c  h )  f (c )
f (c  h )  f (c )
 0 if h  0
h
f ( c  h )  f (c )
f (c)  lim
 0 if h  0
h 0
h
f ( c  h )  f (c )
f (c  h )  f (c )
 0 if h  0
h
f ( c  h )  f (c )
f (c)  lim
 0 if h  0
h 0
h
f (c)  0 and f (c)  0
Then f (c)  0
The Absolute Value of x.
f ( x)  x
f (0)  DNE
1 if x  0
f ( x)  
1 if x  0
Generic Example
y
8
f ( x)  0
7
6
5
4
3
f ( x)  DNE
2
1
x
-3
-2
-1
1
2
3
4
5
6
-1
The corresponding values of x are called
Critical Points of f
Critical Points of f
A critical number of a function f is a number c in
the domain of f such that
a. f (c)  0 (stationary point)
b. f (c ) does not exist (singular point)
Candidates for Relative Extrema
1.Stationary points: any x such that x is in
the domain of f and f '(x)  0.
2.Singular points: any x such that x is in the
domain of f and f '(x)  undefined
3. Remark: notice that not every critical number
correspond to a local maximum or local minimum.
We use “local extrema” to refer to either a max or
a min.
Fermat’s Theorem
If a function f has a local maximum or minimum
at c, then c is a critical number of f
Notice that the theorem does not say that at every
critical number the function has a local maximum
or local minimum
Generic Example
y
8
f ( x)  0
7
not a local extrema
6
5
4
3
f ( x)  DNE
2
not a local extrema
1
x
-3
-2
-1
1
2
3
4
5
6
-1
Two critical points of f that do
not correspond to local extrema
Example
Find all the critical numbers of
f ( x)  3 x 3  3 x .
x2 1
f ( x) 
3
x
3
 3x

2
Stationary points: x  1
Singular points: x  0,  3
Graph of f ( x)  x  3 x .
3
3
y
Local max. f (1)  3 2
2
1
x
-2
-1
1
2
3
-1
-2
-3
Local min. f (1)   3 2
Extreme Value Theorem
If a function f is continuous on a closed interval [a, b],
then f attains an absolute maximum and absolute
minimum on [a, b]. Each extremum occurs at a critical
number or at an endpoint.
a
b
Attains max.
and min.
a
b
a
b
Attains min.
but not max.
No min. and
no max.
Open Interval
Not continuous
Finding absolute extrema on [a , b]
1. Find all critical numbers for f (x) in (a,b).
2. Evaluate f (x) for all critical numbers in (a,b).
3. Evaluate f (x) for the endpoints a and b of the
interval [a,b].
4. The largest value found in steps 2 and 3 is the
absolute maximum for f on the interval [a , b],
and the smallest value found is the absolute
minimum for f on [a,b].
Example
 1 
Find the absolute extrema of f ( x)  x  3 x on   ,3 .
 2 
2
f ( x)  3x  6 x  3x( x  2)
3
2
Critical values of f inside the interval (-1/2,3) are x = 0, 2
Evaluate
f (0)  0
Absolute Max.
f (2)  4
Absolute Min.
7
 1
f    
8
 2
f  3  0
Absolute Max.
Example
 1 
Find the absolute extrema of f ( x)  x  3 x on   ,3 .
 2 
3
2
Critical values of f inside the interval (-1/2,3) are x = 0, 2
Absolute Max.
-2
-1
1
2
3
4
5
6
Absolute Min.
-5
Example
 1 
Find the absolute extrema of f ( x)  x  3x on   ,1 .
 2 
2
f ( x)  3x  6 x  3x( x  2)
3
2
Critical values of f inside the interval (-1/2,1) is x = 0 only
Evaluate
f (0)  0
Absolute Max.
7
 1
f    
8
 2
f 1  2
Absolute Min.
Example
 1 
Find the absolute extrema of f ( x)  x  3x on   ,1 .
 2 
2
f ( x)  3x  6 x  3x( x  2)
3
2
Critical values of f inside the interval (-1/2,1) is x = 0 only
Absolute Max.
-2
-1
1
2
3
4
5
6
Absolute Min.
-5
Related documents