Download HW Day 17 Name___________________ 2.4 WS Reasoning Using

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
HW Day 17
2.4 WS Reasoning Using Properties from Algebra
Name___________________
Period______Date_________
____
1. Which of the following is an example of the Transitive Property?
a.
b.
c.
d.
____
2. If PQ = 3 and PQ + RS = 5, then 3 + RS = 5 is an example of the __________.
a. Substitution Property of Equality
b. Multiplication Property of Equality
c. Transitive Property of Equality
d. Reflexive Property of Equality
bisects HNK.
3.
a. Write an equation that shows the relationship between mHNJ and mJNK.
b. Solve the equation and write a reason for each step.
c. Find mHNK. Explain how you got your answer.
.
4. Name the property which justifies the following conclusion:
Given:
Conclusion:
5. Name the property which justifies the following conclusion:
Given:
Conclusion:
Identify the property that makes the statement true.
6. If XY = MN, then MN = XY.
7. If mP = mR and mR = mT, then mP = mT.
8. If MP = PQ and PQ = QR, then MP = QR.
9. If m1 + m2 = 25° and m1 = 9°, then
10. Solve the equations and write a reason for each step:
a)
b)
c)
.
2.4 WS
Answer Section
1. ANS: D
PTS: 1
DIF: Level A
REF: MLGE0178
NAT: NCTM 9-12.ALG.2.b
TOP: Lesson 2.5 Reason Using Properties from Algebra
KEY: equality | symmetric | transitive | reflexive
BLM: Knowledge
NOT: 978-0-618-65613-4
2. ANS: A
PTS: 1
DIF: Level A
REF: MHGT0089
NAT: NCTM 9-12.ALG.2.b
TOP: Lesson 2.5 Reason Using Properties from Algebra
KEY: property | substitution | multiplication | transitive | reflexive
BLM: Knowledge NOT: 978-0-618-65613-4
3. ANS:
a. 3x – 4 = 2(x + 2)
b. x = 8. 3x – 4 = 2x + 4, Distributive Property; 3x = 2x + 8, Addition Property of Equality; x = 8, Subtraction
Property of Equality
c. mHNK = 40. If x = 8, then mHNJ = 3(8) – 4 = 20 and mJNK = 2(8 + 2) = 20. mHNK = mHNJ +
mJNK = 20 + 20 = 40.
PTS: 1
DIF: Level C
REF: GEO.02.05.MS.04
NAT: NCTM 9-12.ALG.2.b | NCTM 9-12.ALG.2.c
STA: AZ.AZGLA.MTH.03.9-12.3.2.PO 7 | AZ.AZGLA.MTH.03.9-12.3.3.PO 4 |
AZ.AZGLA.MTH.03.9-12.3.3.PO 5
TOP: Lesson 2.5 Reason Using Properties from Algebra
KEY: Multi-Step | Angle bisector | Algebra
BLM: Analysis
NOT: 978-0-618-65613-4
4. ANS:
Substitution property of equality
PTS: 1
DIF: Level B
REF: MLGE0454 NAT: NCTM 9-12.ALG.2.b
STA: AZ.AZGLA.MTH.03.9-12.1.1.PO 2
TOP: Lesson 2.5 Reason Using Properties from Algebra
KEY: property | distributive | substitution | algebra | equality | transitive
BLM: Comprehension
NOT: 978-0-618-65613-4
5. ANS:
Multiplication property of equality
PTS: 1
DIF: Level B
REF: MLGE0455 NAT: NCTM 9-12.ALG.2.b
TOP: Lesson 2.5 Reason Using Properties from Algebra
KEY: property | multiplication | algebra | addition | equality | transitive
BLM: Comprehension
NOT: 978-0-618-65613-4
6. ANS:
Symmetric Property of Equality
PTS:
TOP:
KEY:
NOT:
7. ANS:
1
DIF: Level A
REF: BS022081
Lesson 2.5 Reason Using Properties from Algebra
property | segment | TAAS2 | symmetric | TEKSb3E
978-0-618-65613-4
NAT: NCTM 9-12.ALG.2.b
BLM: Knowledge
Transitive Property of Equality
PTS: 1
DIF: Level A
REF: BS022082
STA: AZ.AZGLA.MTH.03.9-12.4.1.PO 6
TOP: Lesson 2.5 Reason Using Properties from Algebra
KEY: property | angle | TAAS2 | TEKSb3E | transitive
NOT: 978-0-618-65613-4
8. ANS:
Transitive Property of Equality
NAT: NCTM 9-12.ALG.2.b
PTS: 1
DIF: Level A
REF: BS022083
TOP: Lesson 2.5 Reason Using Properties from Algebra
KEY: property | segment | TAAS2 | TEKSb3E | transitive
NOT: 978-0-618-65613-4
9. ANS:
Substitution Property of Equality
NAT: NCTM 9-12.ALG.2.b
PTS: 1
DIF: Level A
REF: BS022084
TOP: Lesson 2.5 Reason Using Properties from Algebra
KEY: property | angle | substitution | TAAS2 | TEKSb3E
NOT: 978-0-618-65613-4
10. ANS:
a) x=3
b) x= 6/11
c) x=18
NAT: NCTM 9-12.ALG.2.b
PTS: 1
BLM: Knowledge
BLM: Knowledge
BLM: Knowledge
Related documents