Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Strong law of large numbers
Let X1, X2, ..., Xn be a set of independent random variables
having a common distribution, and let E[Xi] = m. then, with
probability 1
X1  X1  ...  X n
 m as n  .
n
Central Limit Theorem
Let X1, X2, ..., Xn be a set of independent random variables
having a common distribution with mean m and variance s.
Then the distribution of
X 1  X 1  ...  X n  nm
s n
tends to the standard normal as n  . That is
P(
X 1  X 1  ...  X n  nm
as n  .
s n
 a) 
1
2

a

e
 x2 / 2
dx
Conditional probability and
conditional expectations
Let X and Y be two discrete random variables, then the
conditional probability mass function of X given that Y=y is
defined as
P{ X  x, Y  y} p( x, y)
pX |Y ( x | y)  P{ X  x | Y  y} 

.
P{Y  y}
p( y )
for all values of y for which P(Y=y)>0.
Conditional probability and
conditional expectations
Let X and Y be two discrete random variables, then the
conditional probability mass function of X given that Y=y is
defined as
P{ X  x, Y  y} p( x, y)
pX |Y ( x | y)  P{ X  x | Y  y} 

.
P{Y  y}
p( y )
for all values of y for which P(Y=y)>0.
The conditional expectation of X given that Y=y is defined as
E[ X | Y  y ]   xP{ X  x | Y  y}   xp X |Y ( x | y ).
x
x
Let X and Y be two continuous random variables, then the
conditional probability density function of X given that Y=y
is defined as
f ( x, y)
f X |Y ( x | y) 
.
fY ( y )
for all values of y for which fY(y)>0.
Let X and Y be two continuous random variables, then the
conditional probability density function of X given that Y=y
is defined as
f ( x, y)
f X |Y ( x | y) 
.
fY ( y )
for all values of y for which fY(y)>0.
The conditional expectation of X given that Y=y is defined as

E[ X | Y  y]   xf X |Y ( x | y)dx.

E[ X ]  E[ E[ X | Y  y ]]  E[ E[ X | Y ]]
E[ X ]   E[ X | Y  y ]P(Y  y ) if Y is discrete
y

E[ X ]   E[ X | Y  y ] f ( y )dy if Y is continuous.

Proof
 E[ X | Y  y]P(Y  y)  { xP( X  x | Y  y)}P(Y  y)
y
y
x
Proof
 E[ X | Y  y]P(Y  y)  { xP( X  x | Y  y )}P(Y  y )
y
y
x
P ( X  x, Y  y )
P(Y  y )
  x
P(Y  y )
x
y
Proof
 E[ X | Y  y]P(Y  y)  { xP( X  x | Y  y)}P(Y  y)
y
y
x
P ( X  x, Y  y )
  x
P(Y  y )
P (Y  y )
y
x
  xP ( X  x, Y  y )
y
x
Proof
 E[ X | Y  y]P(Y  y)  { xP( X  x | Y  y )}P(Y  y )
y
y
x
P ( X  x, Y  y )
  x
P(Y  y )
P(Y  y )
y
x
  xP( X  x, Y  y )
y
x
  xP( X  x, Y  y )
x
y
Proof
 E[ X | Y  y]P(Y  y)  { xP( X  x | Y  y )}P(Y  y )
y
y
x
P ( X  x, Y  y )
  x
P(Y  y )
P(Y  y )
y
x
  xP( X  x, Y  y )
y
x
  xP( X  x, Y  y )
x
y
  xP( X  x)
x
Proof
 E[ X | Y  y]P(Y  y)  { xP( X  x | Y  y )}P(Y  y )
y
y
x
P ( X  x, Y  y )
  x
P(Y  y )
P(Y  y )
y
x
  xP( X  x, Y  y )
y
x
  xP( X  x, Y  y )
x
y
  xP( X  x)
x
 E[ X ]
The sum of a random number of
random variables
Example: The number N of customers that place orders each
day with an online bookstore is a random variable with
expected value E[N].
The sum of a random number of
random variables
Example: The number N of customers that place orders each
day with an online bookstore is a random variable with
expected value E[N]. The number of books Xi that each
customer i (i = 1, 2, ..., N) purchases is also a random variable
E[Xi] with expected value E[Xi].
The sum of a random number of
random variables
Example: The number N of customers that place orders each
day with an online bookstore is a random variable with
expected value E[N]. The number of books Xi that each
customer i (i = 1, 2, ..., N) purchases is also a random variable
E[Xi] with expected value E[Xi]. What is the expected value of
the total number of books Y sold each day? What is its
variance?
The sum of a random number of
random variables
Example: The number N of customers that place orders each
day with an online bookstore is a random variable with
expected value E[N]. The number of books Xi that each
customer i (i = 1, 2, ..., N) purchases is also a random variable
E[Xi] with expected value E[Xi]. What is the expected value of
the total number of books Y sold each day? What is its
variance? Assume that the number of books are independent
and identically distributed with the same mean E[Xi]=E[X] and
variance Var[Xi]=E[X] for i=1,..., N. Also assume the number of
books purchased per customer is independent of the total
number of customers.
The expected value
E[Y ]  E[ i 1 X i ]  E[ E[ i 1 X i | N  n]]
N
N
Since E[ i 1 X i | N  n]  E[ i 1 X i ]  nE[ X ],
N
E[Y ]  E[nE[ X ]]  E[ X ]E[ N ]
n
The variance

 Var[Y ]  E 


N
i 1
 
2
Xi
N




E
X

i

 i 1 

2
The variance
 X  
 

X    E  E  

 

 Var[Y ]  E 


 E


N
i 1
i 1
2
i
2
N
i
N




E
X

i

 i 1 
N
i 1
Xi

2

2

| N  n  ,

The variance
 X  

 


X    E  E   X  | N  n   ,


 



X  | N  n   E   X  




 Var[Y ]  E 



 E  


 E

N
i 1
N
i 1
2
N
i 1
2
i
N




E
X

i

 i 1 
2
N
i 1
i
2
i
2
2
n
i 1
i
i
2
 Var   i 1 X i   E   i 1 X i   nVar  X   n 2 E[ X ]2




n
n
The variance
 X  

 


X    E  E   X  | N  n   ,


 



X  | N  n   E   X  




 Var[Y ]  E 



 E  


 E

i 1
2
N
i 1
2
N
i

 N X i 

E

 i 1 
2
N
i 1
i
i
2
N
i 1
2
2
n
i 1
i
i
2
 Var   i 1 X i   E   i 1 X i   nVar  X   n 2 E[ X ]2




n
 
 E E 
 

 i 1 X i
N
n

2

| N  n    E[ N ]Var  X   E[ N 2 ]E[ X ]2

The variance
 X  

 


X    E  E   X  | N  n   ,


 



X  | N  n   E   X  




 Var[Y ]  E 



 E  


 E

i 1
2
N
i 1
2
N
i
N




E
X

i

 i 1 
2
N
i 1
i
i
2
N
i 1
2
2
n
i 1
i
i
 Var   i 1 X i   E   i 1 X i   nVar  X   n 2 E[ X ]2




2
N
 

 E  E   i 1 X i | N  n    E[ N ]Var  X   E[ N 2 ]E[ X ]2

 
n


 E


n
2

 i 1 X i
N

2

2
2

E
[
N
]Var
X

E
[
N
]
E
[
X
]




 Var(Y )  E 


N
i 1
 
2
Xi
N




E
X

i

 i 1 

2
= E[ N ]Var( X )  E[ N ]E[ X ]   E[ N ]E[ X ] 
2
2

 E[ N ]Var( X )  E[ X ]2 E[ N 2 ]  E[ N ]2
=E[ N ]Var( X )  E[ X ]2 Var ( N )

2
If N is Poisson distributed with parameter , the random
Y = X1+X2+...+ XN is called a compound Poisson random
variable
Var(Y )  E[ N ]Var( X )  E[ X ]2 Var ( N )
= Var( X )  E[ X ]2 
= E[ X 2 ]
Computing probabilities by conditioning
Let E denote some event. Define a random variable X by
1, if E occurs
X 
0, if E does not occur
 E[ X ]  P ( E )
Computing probabilities by conditioning
Let E denote some event. Define a random variable X by
1, if E occurs
X 
0, if E does not occur
 E[ X ]  P( E )
 E[ X | Y  y ]   xP ( X  x | Y  y )  P ( X  1| Y  y )  P ( E | Y  y )
x
Computing probabilities by conditioning
Let E denote some event. Define a random variable X by
1, if E occurs
X 
0, if E does not occur
 E[ X ]  P ( E )
 E[ X | Y  y ]   xP ( X  x | Y  y )  P ( X  1| Y  y )  P ( E | Y  y )
x
 P ( E )  E[ X ]  E[ E[ X | Y  y ]]
=  P ( E | Y  y )P (Y  y )   if Y is discrete
y

  P ( E | Y  y ) fY ( y )dy   if Y is continuous

Example 1: Let X and Y be two independent continuous
random variables with densities fX and fY. What is P(X<Y)?
Example 1: Let X and Y be two independent continuous
random variables with densities fX and fY. What is P(X<Y)?

P( X  Y )   P( X  Y | Y  y ) fY ( y ) dy

Example 1: Let X and Y be two independent continuous
random variables with densities fX and fY. What is P(X<Y)?

P( X  Y )   P( X  Y | Y  y ) fY ( y)dy


  P ( X  y ) fY ( y )dy

Example 1: Let X and Y be two independent continuous
random variables with densities fX and fY. What is P(X<Y)?

P( X  Y )   P( X  Y | Y  y ) fY ( y ) dy


  P ( X  y ) fY ( y )dy


  FX ( y ) fY ( y )dy

Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
FX Y (a )  P( X  Y  a )
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?

FX Y (a)  P( X  Y  a)   P( X  Y  a | Y  y) fY ( y)dy

Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?

FX Y (a )  P( X  Y  a )   P ( X  Y  a | Y  y ) fY ( y )dy


  P ( X  y  a ) fY ( y )dy

Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?

FX Y (a)  P( X  Y  a)   P( X  Y  a | Y  y ) fY ( y )dy


  P ( X  y  a ) fY ( y )dy


  P ( X  a  y ) fY ( y )dy

Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?

FX Y (a)  P( X  Y  a)   P( X  Y  a | Y  y ) fY ( y )dy


  P ( X  y  a) fY ( y )dy


  P ( X  a  y ) fY ( y )dy


  FX (a  y ) fY ( y )dy

Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?

FX Y (a)  P( X  Y  a)   P( X  Y  a | Y  y ) fY ( y )dy


  P ( X  y  a) fY ( y )dy


  P ( X  a  y ) fY ( y )dy


  FX (a  y ) fY ( y )dy

Example 3: (Thinning of a Poisson) Suppose X is a
Related documents