Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Strong law of large numbers
Let X1, X2, ..., Xn be a set of independent random variables
having a common distribution, and let E[Xi] = m. then, with
probability 1
X1 X1 ... X n
m as n .
n
Central Limit Theorem
Let X1, X2, ..., Xn be a set of independent random variables
having a common distribution with mean m and variance s.
Then the distribution of
X 1 X 1 ... X n nm
s n
tends to the standard normal as n . That is
P(
X 1 X 1 ... X n nm
as n .
s n
a)
1
2
a
e
x2 / 2
dx
Conditional probability and
conditional expectations
Let X and Y be two discrete random variables, then the
conditional probability mass function of X given that Y=y is
defined as
P{ X x, Y y} p( x, y)
pX |Y ( x | y) P{ X x | Y y}
.
P{Y y}
p( y )
for all values of y for which P(Y=y)>0.
Conditional probability and
conditional expectations
Let X and Y be two discrete random variables, then the
conditional probability mass function of X given that Y=y is
defined as
P{ X x, Y y} p( x, y)
pX |Y ( x | y) P{ X x | Y y}
.
P{Y y}
p( y )
for all values of y for which P(Y=y)>0.
The conditional expectation of X given that Y=y is defined as
E[ X | Y y ] xP{ X x | Y y} xp X |Y ( x | y ).
x
x
Let X and Y be two continuous random variables, then the
conditional probability density function of X given that Y=y
is defined as
f ( x, y)
f X |Y ( x | y)
.
fY ( y )
for all values of y for which fY(y)>0.
Let X and Y be two continuous random variables, then the
conditional probability density function of X given that Y=y
is defined as
f ( x, y)
f X |Y ( x | y)
.
fY ( y )
for all values of y for which fY(y)>0.
The conditional expectation of X given that Y=y is defined as
E[ X | Y y] xf X |Y ( x | y)dx.
E[ X ] E[ E[ X | Y y ]] E[ E[ X | Y ]]
E[ X ] E[ X | Y y ]P(Y y ) if Y is discrete
y
E[ X ] E[ X | Y y ] f ( y )dy if Y is continuous.
Proof
E[ X | Y y]P(Y y) { xP( X x | Y y)}P(Y y)
y
y
x
Proof
E[ X | Y y]P(Y y) { xP( X x | Y y )}P(Y y )
y
y
x
P ( X x, Y y )
P(Y y )
x
P(Y y )
x
y
Proof
E[ X | Y y]P(Y y) { xP( X x | Y y)}P(Y y)
y
y
x
P ( X x, Y y )
x
P(Y y )
P (Y y )
y
x
xP ( X x, Y y )
y
x
Proof
E[ X | Y y]P(Y y) { xP( X x | Y y )}P(Y y )
y
y
x
P ( X x, Y y )
x
P(Y y )
P(Y y )
y
x
xP( X x, Y y )
y
x
xP( X x, Y y )
x
y
Proof
E[ X | Y y]P(Y y) { xP( X x | Y y )}P(Y y )
y
y
x
P ( X x, Y y )
x
P(Y y )
P(Y y )
y
x
xP( X x, Y y )
y
x
xP( X x, Y y )
x
y
xP( X x)
x
Proof
E[ X | Y y]P(Y y) { xP( X x | Y y )}P(Y y )
y
y
x
P ( X x, Y y )
x
P(Y y )
P(Y y )
y
x
xP( X x, Y y )
y
x
xP( X x, Y y )
x
y
xP( X x)
x
E[ X ]
The sum of a random number of
random variables
Example: The number N of customers that place orders each
day with an online bookstore is a random variable with
expected value E[N].
The sum of a random number of
random variables
Example: The number N of customers that place orders each
day with an online bookstore is a random variable with
expected value E[N]. The number of books Xi that each
customer i (i = 1, 2, ..., N) purchases is also a random variable
E[Xi] with expected value E[Xi].
The sum of a random number of
random variables
Example: The number N of customers that place orders each
day with an online bookstore is a random variable with
expected value E[N]. The number of books Xi that each
customer i (i = 1, 2, ..., N) purchases is also a random variable
E[Xi] with expected value E[Xi]. What is the expected value of
the total number of books Y sold each day? What is its
variance?
The sum of a random number of
random variables
Example: The number N of customers that place orders each
day with an online bookstore is a random variable with
expected value E[N]. The number of books Xi that each
customer i (i = 1, 2, ..., N) purchases is also a random variable
E[Xi] with expected value E[Xi]. What is the expected value of
the total number of books Y sold each day? What is its
variance? Assume that the number of books are independent
and identically distributed with the same mean E[Xi]=E[X] and
variance Var[Xi]=E[X] for i=1,..., N. Also assume the number of
books purchased per customer is independent of the total
number of customers.
The expected value
E[Y ] E[ i 1 X i ] E[ E[ i 1 X i | N n]]
N
N
Since E[ i 1 X i | N n] E[ i 1 X i ] nE[ X ],
N
E[Y ] E[nE[ X ]] E[ X ]E[ N ]
n
The variance
Var[Y ] E
N
i 1
2
Xi
N
E
X
i
i 1
2
The variance
X
X E E
Var[Y ] E
E
N
i 1
i 1
2
i
2
N
i
N
E
X
i
i 1
N
i 1
Xi
2
2
| N n ,
The variance
X
X E E X | N n ,
X | N n E X
Var[Y ] E
E
E
N
i 1
N
i 1
2
N
i 1
2
i
N
E
X
i
i 1
2
N
i 1
i
2
i
2
2
n
i 1
i
i
2
Var i 1 X i E i 1 X i nVar X n 2 E[ X ]2
n
n
The variance
X
X E E X | N n ,
X | N n E X
Var[Y ] E
E
E
i 1
2
N
i 1
2
N
i
N X i
E
i 1
2
N
i 1
i
i
2
N
i 1
2
2
n
i 1
i
i
2
Var i 1 X i E i 1 X i nVar X n 2 E[ X ]2
n
E E
i 1 X i
N
n
2
| N n E[ N ]Var X E[ N 2 ]E[ X ]2
The variance
X
X E E X | N n ,
X | N n E X
Var[Y ] E
E
E
i 1
2
N
i 1
2
N
i
N
E
X
i
i 1
2
N
i 1
i
i
2
N
i 1
2
2
n
i 1
i
i
Var i 1 X i E i 1 X i nVar X n 2 E[ X ]2
2
N
E E i 1 X i | N n E[ N ]Var X E[ N 2 ]E[ X ]2
n
E
n
2
i 1 X i
N
2
2
2
E
[
N
]Var
X
E
[
N
]
E
[
X
]
Var(Y ) E
N
i 1
2
Xi
N
E
X
i
i 1
2
= E[ N ]Var( X ) E[ N ]E[ X ] E[ N ]E[ X ]
2
2
E[ N ]Var( X ) E[ X ]2 E[ N 2 ] E[ N ]2
=E[ N ]Var( X ) E[ X ]2 Var ( N )
2
If N is Poisson distributed with parameter , the random
Y = X1+X2+...+ XN is called a compound Poisson random
variable
Var(Y ) E[ N ]Var( X ) E[ X ]2 Var ( N )
= Var( X ) E[ X ]2
= E[ X 2 ]
Computing probabilities by conditioning
Let E denote some event. Define a random variable X by
1, if E occurs
X
0, if E does not occur
E[ X ] P ( E )
Computing probabilities by conditioning
Let E denote some event. Define a random variable X by
1, if E occurs
X
0, if E does not occur
E[ X ] P( E )
E[ X | Y y ] xP ( X x | Y y ) P ( X 1| Y y ) P ( E | Y y )
x
Computing probabilities by conditioning
Let E denote some event. Define a random variable X by
1, if E occurs
X
0, if E does not occur
E[ X ] P ( E )
E[ X | Y y ] xP ( X x | Y y ) P ( X 1| Y y ) P ( E | Y y )
x
P ( E ) E[ X ] E[ E[ X | Y y ]]
= P ( E | Y y )P (Y y ) if Y is discrete
y
P ( E | Y y ) fY ( y )dy if Y is continuous
Example 1: Let X and Y be two independent continuous
random variables with densities fX and fY. What is P(X<Y)?
Example 1: Let X and Y be two independent continuous
random variables with densities fX and fY. What is P(X<Y)?
P( X Y ) P( X Y | Y y ) fY ( y ) dy
Example 1: Let X and Y be two independent continuous
random variables with densities fX and fY. What is P(X<Y)?
P( X Y ) P( X Y | Y y ) fY ( y)dy
P ( X y ) fY ( y )dy
Example 1: Let X and Y be two independent continuous
random variables with densities fX and fY. What is P(X<Y)?
P( X Y ) P( X Y | Y y ) fY ( y ) dy
P ( X y ) fY ( y )dy
FX ( y ) fY ( y )dy
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
FX Y (a ) P( X Y a )
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
FX Y (a) P( X Y a) P( X Y a | Y y) fY ( y)dy
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
FX Y (a ) P( X Y a ) P ( X Y a | Y y ) fY ( y )dy
P ( X y a ) fY ( y )dy
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
FX Y (a) P( X Y a) P( X Y a | Y y ) fY ( y )dy
P ( X y a ) fY ( y )dy
P ( X a y ) fY ( y )dy
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
FX Y (a) P( X Y a) P( X Y a | Y y ) fY ( y )dy
P ( X y a) fY ( y )dy
P ( X a y ) fY ( y )dy
FX (a y ) fY ( y )dy
Example 2: Let X and Y be two independent continuous
random variables with densities fX and fY. What is the
distribution of X+Y?
FX Y (a) P( X Y a) P( X Y a | Y y ) fY ( y )dy
P ( X y a) fY ( y )dy
P ( X a y ) fY ( y )dy
FX (a y ) fY ( y )dy
Example 3: (Thinning of a Poisson) Suppose X is a