Download no mixed numbers, rounded decimals or repeating

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Geometry PreAP/IB
A #_____________
Name:____________________________________________per:_____
Review #1 for Test 2
NO MIXED NUMBERS, ROUNDED DECIMALS OR REPEATING DECIMALS
1. Conditional Statement: If two angles are adjacent, then they have a common side.
Converse:__________________________________________________________________________________
______________________________________________________________________________________________
Inverse:____________________________________________________________________________________
______________________________________________________________________________________________
Contrapositive: ____________________________________________________________________________
______________________________________________________________________________________________
T or F
T or F
T or F
T or F
2. If π‘šβˆ π΄ = 63o, then ∠𝐴 is an acute angle. The conditional statement is TRUE or FALSE. (CIRCLE ONE)
Write the converse: _____________________________________________________________________________ TRUE / FALSE
3. _________________________If 3x – 15 is the measure of an acute angle, what restrictions are placed on x?
4. Find: GJ = ______________________
Μ…Μ…Μ…Μ… β‰… 𝐽𝐾
Μ…Μ…Μ… , GH = x + 10
Given: 𝐺𝐻
HJ = 8, JK = 2x – 4
5. βˆ π‘‡and βˆ π‘Œπ‘‹π‘‡ are complementary; βˆ π‘Œπ‘…π‘† β‰… βˆ π‘Œπ‘‹π‘‡;
mβˆ π‘‡ = π‘₯ + 𝑦; mβˆ π‘Œπ‘‹π‘‡ = 4𝑦 + 2; π‘šβˆ π‘Œπ‘…π‘† = 2π‘₯ βˆ’ 6; mβˆ π‘ƒπ‘…π‘† = 100
SHOW ALGEBRA to solve for x = _______ & y = ________
Does βƒ—βƒ—βƒ—βƒ—βƒ—
𝑅𝑋bisect βˆ π‘ƒπ‘…π‘†? __________ EXPLAIN:
6. Find the measures of each of the following angles in terms of x and y.
a. ∠𝐻𝐹𝐾_______________
b. ∠𝐸𝐹𝐾_______________
c. ∠𝐻𝐹𝐺_______________
βƒ—βƒ—βƒ—βƒ—βƒ—βƒ— bisects βˆ π‘…π‘†π‘‡ and π‘šβˆ π‘…π‘†π‘‡ = 108. 𝑆𝑍
βƒ—βƒ—βƒ—βƒ— bisects βˆ π‘…π‘†π‘Š, 𝑆𝑃
βƒ—βƒ—βƒ—βƒ— bisects βˆ π‘…π‘†π‘ and 𝑆𝑅
βƒ—βƒ—βƒ—βƒ—βƒ— bisects
7. π‘†π‘Š
βˆ π‘π‘†π‘ƒ. Sketch a diagram and find mβˆ π‘…π‘†π‘ƒ and π‘šβˆ π‘π‘†π‘ƒ.
mβˆ π‘…π‘†π‘ƒ=_____________________
π‘šβˆ π‘π‘†π‘ƒ=________________________
Show Algebra on the following problems. (Literally translate the word problem into an equation first)
8. _______________ _______________ The measure of the complement of ∠𝐴 is five times the measure of ∠𝐴.
Find the measure of ∠𝐴 and its complement.
9. _______________ _______________ The measure of the supplement of ∠𝐡 is 17 times the measure of ∠𝐡.
Find the measure of ∠𝐡 and its complement.
10. _______________The sum of the measures of a complement and a supplement of an angle is 184°. Find
the measure of the angle.
11. ______________The measure of ∠A is twice the measure of ∠B and the measure of ∠B is twice the measure of
∠C. If ∠A and ∠C are supplementary, find the measure of ∠B.
WRITE THE REASON FOR EACH STATEMENT.
12. Given: ∠DEB and ∠EBT are right angles, ∠1 β‰… ∠4
Prove: ∠2 β‰… ∠3
Statements
Reasons
1. ∠DEB and ∠EBT are right angles. 1. ___________________________________
2. π‘šβˆ DEB= 90
2.___________________________________
π‘šβˆ EBT = 90
3. π‘šβˆ DEB =π‘šβˆ EBT
3.___________________________________
4. π‘šβˆ 1 + π‘šβˆ 2 = π‘šβˆ π·πΈπ΅
4.___________________________________
π‘šβˆ 3 + π‘šβˆ 4 = π‘šβˆ πΈπ΅π‘‡
5. π‘šβˆ 1 + π‘šβˆ 2 = π‘šβˆ πΈπ΅π‘‡
5. ___________________________________
6. π‘šβˆ 1 + π‘šβˆ 2 = π‘šβˆ 3 + π‘šβˆ 4
6. ___________________________________
7. ∠1 β‰… ∠4
7. ___________________________________
8. π‘šβˆ 1 = π‘šβˆ 4
8. ___________________________________
9. π‘šβˆ 1 + π‘šβˆ 2 = π‘šβˆ 3 + π‘šβˆ 1
9.____________________________________
10. π‘šβˆ 2 = π‘šβˆ 3
10.___________________________________
11. ∠2 β‰… ∠3
11.___________________________________
13. Given: ∠1 and ∠2 are complementary
Prove: βˆ π΄π‘‹πΆ is a right angle
Statements
1. ∠1 and ∠2 are complementary
Reasons
1. __________________________
2. π‘šβˆ 1 + m∠2 = 90
2.___________________________
3. π‘šβˆ 1 + m∠2 = π‘šβˆ π΄π‘‹πΆ
3. ___________________________
4. mβˆ π΄π‘‹πΆ = 90
4.____________________________
5. βˆ π΄π‘‹πΆ is a right angle
5. ___________________________
14. Given: π‘šβˆ 1 = π‘šβˆ 3; π‘šβˆ 2 = π‘šβˆ 4
Prove: π‘šβˆ π΄π΅πΆ = π‘šβˆ π·πΈπΉ
Statements
1. π‘šβˆ 1 = π‘šβˆ 3; π‘šβˆ 2 = π‘šβˆ 4
Reasons
1. ___________________________________
2. π‘šβˆ 1 + π‘šβˆ 2 = π‘šβˆ 3 + π‘šβˆ 4
2.___________________________________
3. π‘šβˆ 1 + π‘šβˆ 2 = π‘šβˆ π΄π΅πΆ
3.___________________________________
π‘šβˆ 3 + π‘šβˆ 4 = π‘šβˆ π·πΈπΉ
4. π‘šβˆ 1 + π‘šβˆ 2 = π‘šβˆ π·πΈπΉ
4.___________________________________
5. π‘šβˆ π΄π΅πΆ = π‘šβˆ π·πΈπΉ
5. ___________________________________
INDICATE THE LETTER ASSIGNED TO THE PROPERTY, POSTULATE, THEOREM OR DEFINITION THAT JUSTIFIES
THE GIVEN STATEMENT, REFERECING THE GIVEN DIAGRAM. YOU MAY USE AN ASWER MORE THAN ONCE.
A.
A. SEGMENT ADDITION
B. DEFINITION OF MIDPOINT
C. DEF. OF SEGMENT BISECTOR
D. DEF. OF CONGRUENT SEGMENTS
E. ANGLE ADDITION
F. ANGLE ADDTION PART 2
G. DEFINITION OF ANGLE BISECTOR
H. DEF. OF CONGRUENT ANGLES
I. DEFINITION OF RIGHT ANGLE
J.
K.
L.
M.
N.
O.
P.
Q.
R.
ADDITION/SUBTRACTION OF =
MULTIPLICATION/DIVISION OF =
DISTRIBUTIVE
SUBSTITUTION OF =
REFLEXIVE OF =
REFLEXIVE OF β‰…
SYMMETRIC OF =
SYMMETRIC OF β‰…
TRANSITIVE OF =
S.
T.
U.
V.
W.
TRANSITIVE OF β‰…
MIDPOINT THEOREM
ANGLE BISECTOR THEOREM
VERTICAL ANGLE THEOREM
DEF. OF COMPLEMENTARY ∠s
X.
Y.
Z.
DEF. OF SUPPLEMENTARY ∠s
LINEAR PAIR THEOREM
COMBINE LIKE TERMS
Μ…Μ…Μ…Μ… , then 𝐷𝐼
Μ…Μ…Μ… bisects 𝐡𝐹
Μ…Μ…Μ…Μ… .
15. __________ If E is the midpoint of 𝐡𝐹
16. ___________ π‘šβˆ 5 + π‘šβˆ 6 = π‘šβˆ π·πΎπΊ
17. ___________ If 3π‘₯ βˆ’ 4 = 2, then 3π‘₯ = 6.
18. ___________ If HB = 45 and EK +KH = HB, then EK +KH = 45.
19. ___________ ∠2 β‰… ∠1
1
Μ…Μ…Μ…Μ… is the bisector of ∠𝐸𝐾𝐺, then π‘šβˆ 6 = π‘šβˆ πΈπΎπΊ.
20. ___________ If 𝐾𝐹
2
21. ___________ If K is the midpoint of Μ…Μ…Μ…
𝐽𝐺 , then Μ…Μ…Μ…
𝐽𝐾 β‰… Μ…Μ…Μ…Μ…
𝐾𝐺 .
22. ___________ π‘šβˆ 5 + π‘šβˆ πΉπΎπΌ = 180
23. ___________ If ∠4 β‰… ∠5 and ∠4 β‰… ∠6, then ∠6 β‰… ∠5.
24. ___________ If 2(π‘₯ + 5) = 10, then 2π‘₯ + 10 = 10.
25. ___________ If 2π‘₯ + 3𝑦 + 5π‘₯ = 20 + 2, then 7π‘₯ + 3𝑦 = 22.
Μ…Μ…Μ…Μ… is the bisector of ∠𝐸𝐾𝐽, then ∠3 β‰… ∠4.
26. ___________ If 𝐾𝐢
27. ___________ If BE=5 and BE+EF=BF, then 5+EF=BF.
28. ___________ If BK = KF, then Μ…Μ…Μ…Μ…
𝐡𝐾 β‰… Μ…Μ…Μ…Μ…
𝐾𝐹 .
29. ___________ ∠𝐹 β‰… ∠𝐹
Μ…Μ…Μ…, then K is the midpoint of 𝐷𝐼
Μ…Μ…Μ….
30. ___________ If Μ…Μ…Μ…
𝐽𝐾 is the bisector of 𝐷𝐼
31. __________ If ∠4 β‰… ∠5, then π‘šβˆ 4 = π‘šβˆ 5.
32. ___________ ∠3 and ∠𝐡𝐾𝐺 are supplementary
33. ___________ If π‘šβˆ 5 + π‘šβˆ 6 = 90, then ∠5 and ∠6 are complementary.
34. ___________ If π‘šβˆ 3 + π‘šβˆ π΅πΎπΊ = 180, then ∠3 and ∠𝐡𝐾𝐺 are supplementary.
Related documents