Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Geometry PreAP/IB A #_____________ Name:____________________________________________per:_____ Review #1 for Test 2 NO MIXED NUMBERS, ROUNDED DECIMALS OR REPEATING DECIMALS 1. Conditional Statement: If two angles are adjacent, then they have a common side. Converse:__________________________________________________________________________________ ______________________________________________________________________________________________ Inverse:____________________________________________________________________________________ ______________________________________________________________________________________________ Contrapositive: ____________________________________________________________________________ ______________________________________________________________________________________________ T or F T or F T or F T or F 2. If πβ π΄ = 63o, then β π΄ is an acute angle. The conditional statement is TRUE or FALSE. (CIRCLE ONE) Write the converse: _____________________________________________________________________________ TRUE / FALSE 3. _________________________If 3x β 15 is the measure of an acute angle, what restrictions are placed on x? 4. Find: GJ = ______________________ Μ Μ Μ Μ β π½πΎ Μ Μ Μ , GH = x + 10 Given: πΊπ» HJ = 8, JK = 2x β 4 5. β πand β πππ are complementary; β ππ π β β πππ; mβ π = π₯ + π¦; mβ πππ = 4π¦ + 2; πβ ππ π = 2π₯ β 6; mβ ππ π = 100 SHOW ALGEBRA to solve for x = _______ & y = ________ Does βββββ π πbisect β ππ π? __________ EXPLAIN: 6. Find the measures of each of the following angles in terms of x and y. a. β π»πΉπΎ_______________ b. β πΈπΉπΎ_______________ c. β π»πΉπΊ_______________ ββββββ bisects β π ππ and πβ π ππ = 108. ππ ββββ bisects β π ππ, ππ ββββ bisects β π ππ and ππ βββββ bisects 7. ππ β πππ. Sketch a diagram and find mβ π ππ and πβ πππ. mβ π ππ=_____________________ πβ πππ=________________________ Show Algebra on the following problems. (Literally translate the word problem into an equation first) 8. _______________ _______________ The measure of the complement of β π΄ is five times the measure of β π΄. Find the measure of β π΄ and its complement. 9. _______________ _______________ The measure of the supplement of β π΅ is 17 times the measure of β π΅. Find the measure of β π΅ and its complement. 10. _______________The sum of the measures of a complement and a supplement of an angle is 184°. Find the measure of the angle. 11. ______________The measure of β A is twice the measure of β B and the measure of β B is twice the measure of β C. If β A and β C are supplementary, find the measure of β B. WRITE THE REASON FOR EACH STATEMENT. 12. Given: β DEB and β EBT are right angles, β 1 β β 4 Prove: β 2 β β 3 Statements Reasons 1. β DEB and β EBT are right angles. 1. ___________________________________ 2. πβ DEB= 90 2.___________________________________ πβ EBT = 90 3. πβ DEB =πβ EBT 3.___________________________________ 4. πβ 1 + πβ 2 = πβ π·πΈπ΅ 4.___________________________________ πβ 3 + πβ 4 = πβ πΈπ΅π 5. πβ 1 + πβ 2 = πβ πΈπ΅π 5. ___________________________________ 6. πβ 1 + πβ 2 = πβ 3 + πβ 4 6. ___________________________________ 7. β 1 β β 4 7. ___________________________________ 8. πβ 1 = πβ 4 8. ___________________________________ 9. πβ 1 + πβ 2 = πβ 3 + πβ 1 9.____________________________________ 10. πβ 2 = πβ 3 10.___________________________________ 11. β 2 β β 3 11.___________________________________ 13. Given: β 1 and β 2 are complementary Prove: β π΄ππΆ is a right angle Statements 1. β 1 and β 2 are complementary Reasons 1. __________________________ 2. πβ 1 + mβ 2 = 90 2.___________________________ 3. πβ 1 + mβ 2 = πβ π΄ππΆ 3. ___________________________ 4. mβ π΄ππΆ = 90 4.____________________________ 5. β π΄ππΆ is a right angle 5. ___________________________ 14. Given: πβ 1 = πβ 3; πβ 2 = πβ 4 Prove: πβ π΄π΅πΆ = πβ π·πΈπΉ Statements 1. πβ 1 = πβ 3; πβ 2 = πβ 4 Reasons 1. ___________________________________ 2. πβ 1 + πβ 2 = πβ 3 + πβ 4 2.___________________________________ 3. πβ 1 + πβ 2 = πβ π΄π΅πΆ 3.___________________________________ πβ 3 + πβ 4 = πβ π·πΈπΉ 4. πβ 1 + πβ 2 = πβ π·πΈπΉ 4.___________________________________ 5. πβ π΄π΅πΆ = πβ π·πΈπΉ 5. ___________________________________ INDICATE THE LETTER ASSIGNED TO THE PROPERTY, POSTULATE, THEOREM OR DEFINITION THAT JUSTIFIES THE GIVEN STATEMENT, REFERECING THE GIVEN DIAGRAM. YOU MAY USE AN ASWER MORE THAN ONCE. A. A. SEGMENT ADDITION B. DEFINITION OF MIDPOINT C. DEF. OF SEGMENT BISECTOR D. DEF. OF CONGRUENT SEGMENTS E. ANGLE ADDITION F. ANGLE ADDTION PART 2 G. DEFINITION OF ANGLE BISECTOR H. DEF. OF CONGRUENT ANGLES I. DEFINITION OF RIGHT ANGLE J. K. L. M. N. O. P. Q. R. ADDITION/SUBTRACTION OF = MULTIPLICATION/DIVISION OF = DISTRIBUTIVE SUBSTITUTION OF = REFLEXIVE OF = REFLEXIVE OF β SYMMETRIC OF = SYMMETRIC OF β TRANSITIVE OF = S. T. U. V. W. TRANSITIVE OF β MIDPOINT THEOREM ANGLE BISECTOR THEOREM VERTICAL ANGLE THEOREM DEF. OF COMPLEMENTARY β s X. Y. Z. DEF. OF SUPPLEMENTARY β s LINEAR PAIR THEOREM COMBINE LIKE TERMS Μ Μ Μ Μ , then π·πΌ Μ Μ Μ bisects π΅πΉ Μ Μ Μ Μ . 15. __________ If E is the midpoint of π΅πΉ 16. ___________ πβ 5 + πβ 6 = πβ π·πΎπΊ 17. ___________ If 3π₯ β 4 = 2, then 3π₯ = 6. 18. ___________ If HB = 45 and EK +KH = HB, then EK +KH = 45. 19. ___________ β 2 β β 1 1 Μ Μ Μ Μ is the bisector of β πΈπΎπΊ, then πβ 6 = πβ πΈπΎπΊ. 20. ___________ If πΎπΉ 2 21. ___________ If K is the midpoint of Μ Μ Μ π½πΊ , then Μ Μ Μ π½πΎ β Μ Μ Μ Μ πΎπΊ . 22. ___________ πβ 5 + πβ πΉπΎπΌ = 180 23. ___________ If β 4 β β 5 and β 4 β β 6, then β 6 β β 5. 24. ___________ If 2(π₯ + 5) = 10, then 2π₯ + 10 = 10. 25. ___________ If 2π₯ + 3π¦ + 5π₯ = 20 + 2, then 7π₯ + 3π¦ = 22. Μ Μ Μ Μ is the bisector of β πΈπΎπ½, then β 3 β β 4. 26. ___________ If πΎπΆ 27. ___________ If BE=5 and BE+EF=BF, then 5+EF=BF. 28. ___________ If BK = KF, then Μ Μ Μ Μ π΅πΎ β Μ Μ Μ Μ πΎπΉ . 29. ___________ β πΉ β β πΉ Μ Μ Μ , then K is the midpoint of π·πΌ Μ Μ Μ . 30. ___________ If Μ Μ Μ π½πΎ is the bisector of π·πΌ 31. __________ If β 4 β β 5, then πβ 4 = πβ 5. 32. ___________ β 3 and β π΅πΎπΊ are supplementary 33. ___________ If πβ 5 + πβ 6 = 90, then β 5 and β 6 are complementary. 34. ___________ If πβ 3 + πβ π΅πΎπΊ = 180, then β 3 and β π΅πΎπΊ are supplementary.