Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Past Years Compilation (mid sem and final)
CHAPTER 4 (SEF 1134)
SEM 1, 2008/2009
1 - x - 1 x 0
2
0 x2
1. Given f ( x) x
- 1
2 x3
Evaluate
Ans:
3
f ( x) dx .
1
[5]
25
6
π
4
4
∑sink ( )
2. Find the exact value
Ans:
k =1
[3]
3
( 2 1)
4
3. By using definition of area under the curve y = f(x) as
n
A = lim ∑f (x *k )Δx
n→∞k =1
with
xk*
as the right endpoint of each subinterval,
show that the area under the the curve y=mx over interval [a,b] is
a+b
m (b - a) (
)
2
4. Evaluate :
x5
2
x3 1
1
dx
[7]
Ans: 4.313
5. Evaluate :
Ans:
e2x
dx
1 e4x
[4]
1
tan -1 (e 2 x ) C
2
3
2
i=1
j=1
6. Evaluate : ∑ [ ∑(i + j)]
[4]
Ans:21
1
7. Evaluate the integrals by applying an appropriate formula from geometry
0
x 2 8 x dx
[4]
8
Ans : 8 π
SEM 2, 2008/2009
5
8. If
f x dx 12 and
1
5
f x dx 36 , find
4
4
f x dx 36 .
[3]
1
9. Evaluate the integral:
2 cos x cos x dx
[5]
1 x 2 dx 12 by interpreting it in terms of areas.
[4]
1
0
1
10. Evaluate
x
0
11. Show by using definition that the area under the curve y x 2x 2 over [0,5] is
25
23
. Use right endpoint approximation.
6
[10]
12. Find the integrals:
1 x dx
b) sin 1 x 2 cos1 x dx
a)
[5]
4
[4]
13. Use geometry formula to find the net signed area between the curve
y = 1 3 x and the interval
ans:
1
3
[-1, ].
[4]
1
3
50
14. By using properties of sigma evaluate
(k 1)
2
[5]
k 1
Ans: 45525
15. Express the following function in a closed form and find the limit.
12 22 32 ... n 2
lim
n
n3
[5]
Ans: 2
16. Use Midpoint Approximation with n = 6 to approximate
8
2
1
dx [5]
1 x2
2
Ans: 0.2907
SEM 3, 2008/2009
3x 2 ; x 2
17. Given f ( x)
, evaluate
4 ; x 2
5
f ( x) dx .
[3]
2
Ans: 19
18. Evaluate the following integral using an appropriate formula from geometry.
5
x
25 x 4 dx .
[4]
0
1
Ans: ( 25)
8
19. Use Definition with x k as the left endpoint of each subinterval to find the area under the curve
f ( x) 1 x 2 over [0,3].
Ans: -6
20. Evaluate
Ans:
x x 3 dx
5
3
2
x 3 2 2x 3 2 C
5
1
21. Evaluate
sin 1 x
2
1 x 2
0
Ans:
[4]
[5]
dx
2
8
1
2
22. Evaluate
x
1 4x
4
dx
[5]
0
Ans:
16
20
23. Evaluate :
[k
2
3]
[3]
k 1
Ans: 2930
24. By using the definition of area, use the right endpoint estimation to find the area under the
curve 𝑦 = 4𝑥 3 + 3𝑥 2 on the interval [0,1].
[6]
Ans: 2
𝜋
25. ∫04 √1 + cos 4𝑥 𝑑𝑥
(Hint : Use trigonometric identity)
[5]
3
Ans:
√2
2
26. Evaluate : ∫
Ans:
2𝑥+1
5 𝑑𝑥
(𝑥+1) ⁄2
4
x 1
[4]
2
3x 1
3
2
C
SEM 1, 2009/2010
27. Express 1 + 2 + 22 + 23 + 24 + 25 + 26 in sigma notation with k = 3 as the lower limit.
[3]
2
28. Evaluate :
1
cos x dx
2
0
Ans:
3 1
[5]
12
n
n
f ( x )
29. By using the definition of an area, A lim
k 1
k
x
with 𝑥𝑘 as the right-end point, show
that the triangle with vertices (0, 0), (0, h) and (b, 0) has an area of
𝟏
𝒃𝒉
𝟐
.
Refer to figure 1 below.
h
b
Equation of line :
2
1
Ans:
155
4
31. Evaluate :
x y
1
b h
1
x 2 x dx
4
30. Evaluate :
Figure 1
[4]
e tan 2 1 tan 2 2 d
[4]
4
Ans :
32.
ex
4 3e2 x dx
Ans:
33.
1 tan 2
e
C
2
1
2 3
tan
1
x
x4 3
Ans:
1
2 3
[4]
3e x
C
2
1
[5]
dx
x2
sec 1
3
C
2 ; x 2
x ; x 2
34. Given f ( x)
3
By using the geometry formula, evaluate
[3]
f ( x ) dx
1
Ans:
17
2
35. Express the following sum in closed form and find the limit :
[5]
n
2 2k k 2
lim 2 3
n
n
n
k 1 n
Ans:
36.
10
3
3
x sin 1 x 2 dx
Ans:
[4]
3
2
2
cos u C cos1 x 2 C
3
3
SEM 2, 2009/2010
37. Evaluate :
∑𝟑𝒌=𝟎 (−𝟐)𝒌 𝒔𝒊𝒏 𝒌𝝅𝟔
[3]
Ans : −9 + 2√3
5
|𝑥 − 2| 𝑖𝑓 𝑥 ≥ 0
38. Given 𝑓(𝑥) = {
𝑥 + 2 𝑖𝑓 𝑥 < 0
[5]
6
Find ∫−4 𝑓(𝑥) 𝑑𝑥.
Ans : 10
39. Evaluate the integral by completing the squares and applying appropriate formula from
geometry
Ans:
3
0
6 x x 2 dx
[4]
9
4
n
the area under the curve 𝑓(𝑥) = 6𝑥 − 𝑥
Ans: 18
k 1
2
ln 2
Ans:
k
x
over [ 0,3]
ln(2 / 3 )
41. Evaluate the following integrals :
n
f ( x ) with 𝑥𝑘 as the right-end point, find
40. By using the definition of an area, A lim
e x
1 e 2 x
dx
[4]
6
SEM 3, 2009/2010
42. Evaluate
Ans :
1
2 x x 2 dx
[6]
5
3
1
43. Find
3
7
(3i j)
[4]
j 0 i 5
Ans : 105
n
44. Use Definition lim
n
f (x
k 1
*
k
) of area under the curve with xk as the right endpoint of each
subinterval to find the area under the curve f ( x ) x 3 6 x over [0,3].
[10]
Ans : -6.75
45. Evaluate
cos(sec 1 x )
x x 2 1
dx
[3]
Ans : sin (sec-1x) + c
6
EXTRE QUESTIONS
46. Evaluate
e
e2
47. Evaluate
e
48. Evaluate
2x
1 e x dx
dx
x ln x
dx
x4 ln x
2
7