Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
MAP 2302- Differential Equations. Sanchez Exam 1-Self-Assessment Answers 1. The sum of $12,000 is invested at the rate of 6% per year compounded continuously. In how many years will the money triple? dy Solution : y(t ) : amount of money at time t , 0.06y , y (0) $12000 dt dy 0.06dt ln y 0.06t c y e 0.06 t c y Ce 0.06 t y y (0) 12000 12000 Ce 0 y (t ) 12000e 0.06 t ln 3 18.31 years 0.06 36000 12000e 0.06 t 3 e 0.06 t 0.06t ln 3 t 2. Find a curve in the xy plane that passes through the point whose slope at any po int ( x, y ) is given by 3 Solution : 10 1, 21 6y 1 x x dy 6 1 dy 6 1 3 y y 3 ( Linear ) dx x x dx x x 6 v( x ) e x6 x dx 6 e 6 ln x e ln x x 6 dy 6 1 dy x6 y x6 3 x6 6x 5 y 3x 6 x 5 dx x x dx 3x 7 x 6 3x 1 x 6 y 3x 6 x 5 x 6 y cy cx 6 7 6 7 6 10 3 1 10 19 10 25 20 25 5 3x 1 5 c cc y 21 7 6 21 42 21 42 42 42 7 6 42x 6 1 3. Solve the differenti al equation y y 2xy 2 x This is a Bernoulli ' s DE , 1y 2 u y1 2 y 1 and du 1y 2 dy dy du 1 1 1y 2 y 1y 2 2xy 2 u 2x dx x dx x 1 dx 1 1 du 1 1 v( x ) e x e ln x u 2 u 2 x x dx x 2 x 1 1 1 u 2x c u 2x 2 cx y 1 2x 2 cx 2x 2 cx y x y 2x 2 cx 2x 2 y cxy 1 -1- 4. Solve x 4 y 4 dx xy 3dy 0 by finding an integratin g factor 4 4 M x y , N xy 3 N M y 3 Not exact . 4y 3 , X y 1 1 M N N y X xy 3 5 ve x dx 4y 3 y 3 5 f ( x0 x e 5 ln x 1 is an integratin g factor. x5 3 dx y dy 0 x4 M 4 y 3 N 4 y 3 M 4 y 3 N 4 y 3 exact , exact , y y x5 x 5 X x5 x 5 X y4 f 1 y 4 c( y ) f ( x, y ) ln x M x x x 5 4x 4 y3 y 3 f c' ( y ) c' ( y ) 0 c( y ) c N x4 x 4 y y4 c 0 or 4x 4 ln x y 4 cx 4 0 Therefore the solution is ln x 4 4x 1 5 x 4 x y 4 dx 1 5 x 3 xy dy 0 1 x y4 x5 Note : Solve x 4 y 4 dx xy 3dy 0 by the technique of homogeneous coefficien ts . Solution : y , y vx and dy vdx xdv x x 4 x 4 v 4 dx x 4 v 3 ( vdx xdv ) 0 (1 v 4 )dx v 4 dx xv 3dv 0 dx v4 dx xv 3dv 0 v 3dv 0 ln x c v 4 4 ln x C x 4 4 y 4 ln x C y 4 4x 4 ln x cx 4 4x 4 ln x y 4 cx 4 0 x Let v -2- 5. Compute the orthogonal trajectories of the one-parameter family of curves x 2 3xy y 2 c Solution: 2x 3y 3xy '2yy ' (3x 2y )y' 2x 3y y 2x 3y 3x 2y The slope of the orthogonal trajectory is given by y' 3x 2y which has 2x 3y homogeneous coefficien ts . Let y vx and dy vdx xdv (3x 2 vx )dx ( 2x 3vx )( vdx xdv ) 0 (3 2 v )dx ( 2 3v ) vdx ( 2 3v )xdv 0 (3 2 v 2 v 3v 2 )dx ( 2 3v )xdv 0 3 3v 2 dx ( 2 3v )xdv 0 2 3v dx 3v 2 3dx dv 0 dv 0 x x 3v 2 3 v2 1 5 A 2 3v 2 A B U sin g partial fractions decomposit ion 1 ( v 1)( v 1) v 1 v 1 B 2 1 5 2 3dx 5 1 2 dv 0 ln( v 1) ln( v 1) 3 ln x C v 1 v 1 x 2 2 5 ln( v 1) ln( v 1) 6 ln x C ln ( v 1) 5 ( v 1)x 6 C ( v 1) 5 ( v 1)x 6 e C k y y ( 1) 5 ( 1)x 6 k y x 5 ( x y ) k or ( x y ) 5 ( x y ) K where K k x x 6. Transform (x-y+5) dx - (2x-y-3)dy=0 to a homogeneous differential equation and and then separate the variables. Do not solve. Solution : xy 50 x 8 0 x 8 and y 13. Let x u 8 and y v 13 2x y 3 0 (u 8 v 13 5)du ( 2u 16 v 13 3)dv 0 (u v )du ( 2u v )dv 0 Let v uw , dv udw wdu u uw )du ( 2u uw (udw wdu ) 0 (1 w )du ( 2 w )udw ( 2 w )wdu 0 (1 w 2w w 2 )du ( w 2)udw 0 ( w 2 3w 1)du ( w 2)udw 0 w2 w 2 3w 1 -3- dw du 0 u 7. A certain radioactive substance has a half-life of 38 hours. Find how long it takes for 90% of the radioactive substance to be dissipated. y(t): amount of radioactive substance at time t y(0): amount of radioactive substance at time t=0 dy dy 1 y (38 ) y (0), y ky ky kdt ln y kt c y e kt c y Ce kt 2 dx y y (0) Ce 0 C y (0) y(t ) y (0)e kt y ( 0) 1 1 ln 2 y (0)e 38k e 38k 38k ln k 2 2 2 38 ln 2 t t t 38 y (t ) y (0)e 38 y (t ) y (0)e ln 2 y (t ) y(0) 2 38 y (38 ) If 90 % is dissipated then y (t ) 10 %y(0) or y(t ) y ( 0) 10 t t y ( 0) 1 t 1 38 38 y ( 0) 2 2 log 2 t 38 log 2 0.1 10 10 38 10 ln 0.1 t 38 t 126 .2332666667 6 hours ln 2 8. Transform the homogeneous differential equation yy'=-x-2y to a variable separable differential equation. Separate the variables and do not solve. dy x 2y 0 or ydy xdx 2ydx 0. Let y vx and dy vdx xdv dx vxvdx xdv xdx 2 vxdx 0 v( vdx xdv) dx 2 vdx y xvdv v 2 2 v 1 dx 0 w 1 w2 dw v v 2 2v 1 dv dx v dx 0 dv 0,. Let w v 1 2 x x v 1 dx 1 1 1 1 0 w 2 dw dx 0 ln w ln x c ln( xw) c x x w w w lnx( v 1) 1 x c ln( y x ) c v 1 yx 9. Solve the OD E e x dy xy 2dx 0, y(0) 1 Solution : It is se parable xex dx dy y2 0 xex dx c 2 and xex e x dy y 2 c xe x ex 1 c 0 1 1 c y 1 1 1 2 or xex e x 2 y x y y xe e x 2 -4- 10. If v(t)=15sint, L=3 henries, R=6 ohms and I(0)=10 amperes, compute the value of the current at any time t. I(t) V L R dI dI dI RI V(t ) 3 6I 15 sin t 2I 5 sin t (Linear) dt dt dt dI v(t ) e 2dt v e 2t e 2t 2e 2t I 5e 2t sin t dt e 2t I 5e 2t sin t e 2t I 5e 2t sin tdt e 2t I e 2t ( 2 sin t cos t ) c L I 2 sin t cos t ce 2t I(0) 10 10 0 1 c c 11 and I 2 sin t cos t 11e 2t 11. Find the differential equation (do not solve) of the family of straight lines with equal slope and y-intercept. Solution : Linear mod el : y mx b. m b y' y y' x y' y y' ( x 1) y' y x 1 12. Find the family of orthogonal trajectories of the one-parameter family of curves y 2 cx3 Solution : y 2 cx3 c y2 x3 y2 2yy ' 3cx 2 2yy ' 3 x3 2 x 2 2yy ' 3y y' 3y x 2x The slope of the orthogonal traje ctorie s is give n by y' 3ydy 2xdx 2x 3y 3y 2 x 2 k 3y 2 2x 2 K whe re K 2k (a family of e llipses) 2 -5- 13. Test the differential equation 3x( xy 2)dx ( x 3 2y )dy 0 for exactness. Show the work . Solution : M 2 M 3x 2 y 6x y 3x It is exact. N x 3 2y N 3x 2 x 14. Use the necessary substitutions to transform the following homogeneous coefficients differential equation to a variable separable differential equation. Solve the equation x 2 y 2 dx xydy 0. Solution : Le t y vx and dy vdx xdv vdv dx 1 1 2 v 2 dx xvdv 0 0 ln(1 2 v 2 ) ln x c x 4 1 2v 2 ln(1 2 v 2 ) 4 ln x C ln (1 2 v 2 )x 4 c (1 2 v 2 )x 4 e c k 2 y (1 2 )x 4 k x 2 2y 2 x 2 k x x 2 v 2 x 2 dx x 2 v( vdx xdv) 0 1 v 2 dx v 2 dx xvdv 0 15. Use the necessary substitutions to transform (x + 2y -4) dx + (-2x –y +5) dy=0 to a variable separable differential equation. x 2y 4 0 x 2y 4 0 3x 6 0 x 2, y 1 2x y 5 0 4x 2y 10 0 Le t x u 2 and y v 1 (u 2 2 v 2 4)du ( 2u 4 v 1 5)dy 0 (u 2 v )du ( 2u v )dv 0 ( Homoge ne ous coe fficie nts) Le t v uw , dv udw wdu u 2uw du ( 2u uw )udw wdu 0 (1 2w )du ( 2 w )udw wdu 0 (1 2w )du ( w 2)udw ( w 2)wdu 0 1 w 2 du ( w 2)udw 0 w 2 1 du ( w 2)udw 0 w2 w2 1 dw du 0 u ( w 1) 3 u 2 1 1 1 du 3 1 3 . dw 0 ln( w 1 ) ln( w 1 ) ln u c ln c 2 w 1 2 w 1 u 2 2 w 1 ( w 1) 3 u 2 v y 1 C ( w 1) 3 u 2 C( w 1) whe re u x 2, w w 1 u x2 3 3 y 1 y 1 y x 1 y x 3 1 ( x 2) 2 C 1 ( x 2) 2 C x 2 x 2 x 2 x2 y x 13 c( y x 3) -6- 16. A spherical snowball is melting in such a way that the rate of decrease of its volume is proportional to its surface area. At 10 A.M. its volume is 500 in 3 and at 11 A.M. its volume is 250 in 3 . When does the snowball finish melting? Solution: dV 4 Step 1. kS where V r 3 and S 4r 2 , V (0) 500 in 3 and V(1) 250 in 3 dt 3 2 2 2 3V 4 3V 4 3V 3 kV 3 Step 2. S 4r 2 and V r 3 r 3 and S 4 3 3 4 4 4 2 2 1 1 dV dV Step 3. kS K V 3 V 3 dV Kdt 3V 3 Kt c V 3 C1t C 2 dt dt 1 Step 4. V (0) 500 in 3 500 C 2 V 3 C1t 3 500 Step 5. V (1) 250 in 3 3 250 C1 3 500 C1 3 250 3 500 1 V 3 3 250 3 500 t 3 500 3 Step 6. V 0 0 3 250 3 500 t 3 500 t t 32 3 2 1 3 500 3 250 3 2 3 500 3 250 3 250 3 2 3 250 4.847322102 or 4 hours 50 min 50.36 seconds Answer : The snowball will finish melting by 2 : 50 : 50 P.M . 17. A 5-lb roast initially at 50F is put into a 375F oven when t=0. The temperature T(t) of the roast is 125 when t=75 (min). When will the roast be medium-rare, a temperature of 150F? dT k (375 T), T(0) 50, T(75) 125, T(?) 150 dt dT kdt ln375 T kt c 375 T e kt c 375 T Ce kt T 375 Ce kt 375 T T(0) 50 375 C C 325 T 375 325e kt T(75) 125 125 375 325e 75k e 75k ln 1.3 ln1.3 t t T(t ) 375 325e 75 150 375 325e 75 250 10 ln 1.3 75k ln k 325 13 75 ln 1.3 ln 1.3 t 225 325e 75 225 e 75 ln 1.3 t 13 ln 1.3 13 13 e 75 t ln t 75(ln ) ln(1.3) 105 .1185784 min ute s 9 75 9 9 -7- 325 18. Solve the following differential equation by finding an appropriate integrating factor. 6xydx 4y 9x 2 dy 0 Solution : M 6xy and N 4y 9x 2 M 6x y Not e xact N 18x x 1 N M 1 18x 6x 2 f ( y ) M x y 6xy y 2 e y dy e 2 ln y y 2 is an integratin g factor y 2 6xydx y 2 4y 9x 2 dy 0 y 2 6xy3dx 4y 3 9x 2 y 2 dy 0 M 6xy3 and N 4y 3 9x 2 y 2 M 18xy 2 y Exact N 18xy 2 x f M 6xy3 f ( x, y ) 3x 2 y 3 c( y ) x f N 4y 3 9x 2 y 2 9 x 2 y 2 c ( y ) y c ( y ) 4y 3 c( y ) y 4 c f ( x, y ) 3x 2 y 3 y 4 c 0 -8- 19. Solve the following IVP differential equation by finding an appropriate integrating factor. xdx x 2 y 4y dy 0, y )4) 0 M 0 Solution : M x and N x 2 y 4y y Not e xact N 2xy x 1 N M 1 2xy 0 2y f ( x ) M x y x e 2ydy 2 e y is an integratin g factor . 2 2 e y xdx e y x 2 y 4y dy 0e y 2 2 2 2 xey dx x 2 ye y 4ye y dy 0 2 M 2xye y 2 2 M xey , N x 2 y 4ye y y Exact 2 N 2xye y x 2 2 f 1 M xey f ( x, y ) x 2 e y c( y ) x 2 2 2 2 f N x 2 ye y 4ye y x 2 ye y c ( y ) y 2 2 c ( y ) 4ye y c( y ) 2e y c 2 1 2 y2 x e 2e y c 0 2 2 2 1 y ( 4) 0 4 2 e 0 2e 0 c 0 8 2 c 0 c 10 2 2 2 2 2 1 x 2 e y 2e y 10 0 x 2 e y 4e y 20 0 2 f ( x, y ) 2 e y ( x 2 4) 20 Anothe r way : xdx x 2 y 4y dy 0, y ( 4) 0 xdx x 2 4 ydy 0 x x2 4 dx ydy 0 y2 1 ln( x 2 4) c ln( x 2 4) y 2 C ln( x 2 4) y 2 c 2 2 2 2 2 y x 2 4 e y k x 2 4 ke y e x 2 4 k e y 2 x 2 4 20 -9- 20. Solve the Bernoullis differential equation y'-4y y -1 , y (0) 3 2 Le t u y1 1 y 2 and du 2ydy dy 3 - 8y 2 2 y -1y , y (0) dx 2 du 8u 2 v( x ) e 8dx e 8x is an int e grating factor . dx du e 8x 8e 8x u 2e 8x e 8x u 2e 8x dx 1 1 1 e 8x u e 8x c u e 8x e 8x ce8x y 2 ce8x 4 4 4 2y y ( 0) 3 3 1 1 1 c c 1 y 2 e 8x y 2 e 8x 2 4 4 4 4 y e 8x 1 4 21. Solve the IVP differential equation y ' 2 y , y ( 2) 3 x Solution : 1 dy 1 x dx y 2 v( x) e e ln x x dx x dy x y 2 x xy ' 2 x xy x 2 c 2(3) 4 c c 2 dx 2 xy x 2 2 y x x -10-