Download Lesson 11 - Toledo Math department

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
LESSON 11 L’HOPITAL’S RULE AND THE SANDWICH THEOREM
Theorem (Cauchy’s Formula) If the functions f and g are continuous on the
closed interval [ a , b ] and differentiable on the open interval ( a , b ) and if
g ( x )  0 for all x in ( a , b ) , then there is a number c in ( a , b ) such that
f (b)  f (a )
f ( c )

.
g( b )  g( a )
g ( c )
Proof Note that g ( b )  g ( a )  0 . For if g ( b )  g ( a )  0 , then g ( a )  g ( b ) .
Thus, by Rolle’s Theorem, there exists a number w in the open interval ( a , b ) such
that g ( w )  0 . This would contradict the fact that g ( x )  0 for all x in ( a , b ) .
Define the function h on the closed interval [ a , b ] by
h( x )  [ f ( b )  f ( a ) ] g ( x )  [ g ( b )  g ( a ) ] f ( x ) .
Note that f ( b )  f ( a ) and g ( b )  g ( a ) are fixed numbers. Since the functions f
and g are continuous on the closed interval [ a , b ] , then the function h is
continuous on [ a , b ] . Since the functions f and g are differentiable on the open
interval ( a , b ) , then the function h is differentiable on ( a , b ) .
Note that h( a )  [ f ( b )  f ( a ) ] g ( a )  [ g ( b )  g ( a ) ] f ( a ) =
f ( b ) g ( a )  f ( a ) g ( a )  g ( b ) f ( a )  g ( a ) f ( a ) = f ( b ) g ( a )  g ( b ) f ( a ) and
h( b )  [ f ( b )  f ( a ) ] g ( b )  [ g ( b )  g ( a ) ] f ( b ) =
f ( b ) g( b )  f ( a ) g( b )  g( b ) f ( b )  g( a ) f ( b ) = g( a ) f ( b )  f ( a ) g( b )
Thus, by Rolle’s Theorem, there exists a number c in the open interval ( a , b ) such
that h( c )  0 . Since h( x )  [ f ( b )  f ( a ) ] g ( x )  [ g ( b )  g ( a ) ] f ( x ) and
f ( b )  f ( a ) and g ( b )  g ( a ) are constants, then
h( x )  [ f ( b )  f ( a ) ] g ( x )  [ g ( b )  g ( a ) ] f ( x ) .
Thus, h( c )  [ f ( b )  f ( a ) ] g ( c )  [ g ( b )  g ( a ) ] f ( c ) and h( c )  0 
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
[ f ( b )  f ( a ) ] g ( c )  [ g ( b )  g ( a ) ] f ( c )  0 
[ f ( b )  f ( a ) ] g ( c )  [ g ( b )  g ( a ) ] f ( c ) 
f (b)  f (a )
f ( c )

g( b )  g( a )
g ( c )
NOTE: Cauchy’s Formula is a generalization of the Mean Value Theorem. If
g ( x )  x , then g ( a )  a , g ( b )  b , and g ( x )  1 for all x. Thus,
f (b)  f (a )
f ( c )
f (b)  f (a )
f ( c )



 f ( b )  f ( a )  f ( c ) ( b  a ) .
g( b )  g( a )
g ( c )
ba
1
Theorem (L’Hopital’s Rule) Suppose the functions f and g are differentiable on
f ( x)
a deleted neighborhood of the number a. If g ( x )  0 for all x  a and if
g( x )
0

has the indeterminate form
or
, then
0

lim
x  a
f ( x)
f ( x )
 lim
.
g ( x ) x  a g ( x )
f ( x )
f ( x )
lim
  .
provided that xlim
exists
or
 a g ( x )
x  a g ( x )
Proof Let { x : 0  x  a   } = ( a   , a )  ( a , a   ) be a deleted
neighborhood of the number a on which the functions f and g are differentiable.
f ( x)
0
Suppose that
has the indeterminate form
at x  a . Then we have that
g( x )
0
f ( x )
 L for some number
lim f ( x )  0 and lim g ( x )  0 . Suppose that xlim
 a g ( x )
x  a
x  a
f ( x)
 L . Let’s defined the following two
L. We want to show that xlim
 a g( x )
functions F and G on the open interval ( a   , a   ) .
 f ( x) , x  a
F( x )  
 0 , x a
 g( x ) , x  a
G
(
x
)


and
 0 , x a
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Since F ( x )  f ( x ) for all x  a in ( a   , a   ) , then the function F is
differentiable on the deleted neighborhood ( a   , a )  ( a , a   ) . Thus, the
function F is continuous on the deleted neighborhood ( a   , a )  ( a , a   ) .
F ( x )  lim f ( x )  0 = F ( a ) , then the function F is continuous at
Since xlim
 a
x  a
x  a . Thus, the function F is continuous on the interval ( a   , a   ) .
Similarly, the function G is continuous on ( a   , a   ) . Thus, for each x in the
deleted neighborhood ( a   , a )  ( a , a   ) , we can apply Cauchy’s Formula to
the interval [ x , a ] if x  a or to the interval [ a , x ] if x  a for the functions F
and G. Thus, by Cauchy’s Formula, there exists a number c x between a and x
such that
F ( x )  F ( a ) F ( c x )

G ( x )  G ( a ) G ( c x )
Since x  a , then we have that F ( x )  f ( x ) and G( x )  g ( x ) . Since c x  a ,
then we have that F ( c x )  f ( c x ) and G( c x )  g ( c x ) . Also, F ( a )  0 and
G( a )  0 . Thus,
F ( x )  F ( a ) F ( c x )


G ( x )  G ( a ) G ( c x )
f ( c x )
f ( x)  0


g( x )  0
g ( c x )
f ( c x )
f ( x)

.
g( x )
g ( c x )
Since c x is between a and x, then as x  a , we have that c x  a . Thus,
lim
x  a
f ( c x )
f ( c x )
f ( x)
 lim
 lim
 L.
g ( x ) x  a g ( c x ) c x  a g ( c x )
This argument would also be true if xlim
 a
indeterminate form
f ( x)
   . The argument for the
g( x )

is more difficult and can be found in texts on advanced

calculus.
COMMENT: One common mistake, which is made by students applying
L’Hopital’s Rule, is using the Quotient Rule instead of differentiating the
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
numerator and denominator. The other mistake is applying L’Hopital’s Rule
0

without verifying that you have the indeterminate form
or
.
0

Examples Find the following limits, if they exist.
1.
sin x
 0
x
lim
x
sin x
sin 0
0
 Indeterminate Form
=
=
 0
x
0
0
lim
x
Applying L’Hopital’s Rule, we have that
sin x
cos x
lim
cos x = 1
= x0
= xlim
 0
 0
x
1
lim
x
Answer: 1
NOTE: The calculation of this limit was needed in order to calculate the
derivative of the sine function.
2.
t
t
sin 3 t
 0
5t
lim
sin 3 t
sin 0
0
 Indeterminate Form
=
=
 0
5t
0
0
lim
Applying L’Hopital’s Rule, we have that
t
sin 3 t
3 cos 3 t
3
3
lim
lim cos 3 t =
=
=
 0
t  0
5t
5
5 t0
5
lim
Answer:
3
5
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
3.
lim 
x  0
Since
lim 
x  0
sin 2 x
5x
5x 
5
x , then
lim 
x  0
sin 2 x
=
5x
1
5
lim 
x  0
sin 2 x
.
x
sin 2 x
0
 Indeterminate Form
=
0
x
Applying L’Hopital’s Rule, we have that
sin 2 x
lim 
=
x  0
5x
1
5
lim  4
x  0
1
5
sin 2 x
lim 
=
x  0
x
x cos 2 x =
4
5
lim 
x  0
1
5
lim 
x  0
2 cos 2 x
=
1
2 x
x cos 2 x =
4
(0) = 0
5
Answer: 0
4.
lim
cos h  1
h
lim
cos h  1
cos 0  1
11
0
 Indeterminate Form
=
=
=
h
0
0
0
h  0
h  0
Applying L’Hopital’s Rule, we have that
lim
h  0
cos h  1
 sin h
sin h   1 ( 0 )  0
= hlim
=  hlim
 0
 0
h
1
Answer: 0
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
NOTE: The calculation of this limit was also needed in order to calculate the
derivative of the sine function.
5.
1  cos 6 x
 0
4x2
lim
x
1  cos 6 x
1  cos 0
11
0
 Indeterminate Form
=
=
=
2
 0
4x
0
0
0
lim
x
Applying L’Hopital’s Rule, we have that
 (  6 sin 6 x )
1  cos 6 x
6 sin 6 x
3
sin 6 x
lim
lim
lim
=
=
=
2
 0
x  0
x  0
8x
4x
8x
4 x0 x
lim
x
sin 6 x
0
 Indeterminate Form
=
x
0
lim
x  0
Applying L’Hopital’s Rule again, we have that
3
sin 6 x
3
3
9
lim
lim 6 cos 6 x = ( 6 ) =
=
4 x0 x
4 x0
4
2
Answer:
6.
9
2
lim 
1  cos t
t3
lim 
1  cos t
1  cos 0
11
0
 Indeterminate Form
=
=
=
t3
0
0
0
t  0
t  0
Applying L’Hopital’s Rule, we have that
lim
t  0

1  cos t
=
t3
lim
t  0

 (  sin t )
1
sin t
lim  2
=
2
3t
3 t0 t
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
lim
t  0
sin t
0
 Indeterminate Form
=
2
0
t
Applying L’Hopital’s Rule again, we have that
1
cos t
1
sin t
1
cos t
lim 
lim  2 =
lim 
=
3 t  0 2t
3 t0 t
6 t0
t
lim 
t  0
cos t
1
 This is NOT an indeterminate form.
=
0
t
cos t
:
t
Sign of y 




2

0
cos t
1
sin t
1
cos t
   . Since
lim  2 =
lim 
by
t  0
t
3 t0 t
6 t0
t
1
sin t
lim  2    .
L’Hopital’s Rule, then
3 t0 t
Thus,
lim 
Thus,
lim
t  0

1  cos t
1
sin t
lim  2    .
=
3
t
3 t0 t
Answer:  
7.
lim
tan 4 x
x
lim
tan 4 x
tan 0
0
 Indeterminate Form
=
=
x
0
0
x  0
x  0
Applying L’Hopital’s Rule, we have that
tan 4 x
lim 
=
x  0
x
4 sec 2 4 x
lim 
4 sec 2 0 = 4 ( 1 ) 4
=
x  0
1
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Answer: 4
8.
lim
tan (  6 x )
x  0
3
x5
Since the tangent function is an odd function, then we may write tan (  6 x ) =
 tan 6 x . Thus, we have that
lim
tan (  6 x )
x  0
lim
3
x5
tan 6 x
x  0 3
x
5
=
= xlim
 0
 tan 6 x
3
x5
=  xlim
 0
tan 6 x
3
x5
tan 0
0
 Indeterminate Form
=
0
0
Applying L’Hopital’s Rule, we have that
 lim
tan 6 x
x  0 3
x5
6 sec 2 6 x
18
sec 2 6 x

lim
lim
= x  0 5 2/3 = 
x  0
5
x 2/3
x
3
1
sec 2 6 x
 This is NOT an indeterminate form.
lim
=
x  0
0
x 2/3
sec 2 6 x
Sign of y 
:
x 2/3
sec 2 6 x
  and
Thus, x lim
 0
x 2/3
+
+

0
sec 2 6 x
sec 2 6 x
lim
  . Thus, lim
 .
x  0
x  0
x 2/3
x 2/3
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Since  xlim
 0
 lim
tan 6 x
x  0 3
x5
Thus, xlim
 0
18
sec 2 6 x
lim
= 
by L’Hopital’s Rule, then
5 x  0 x 2/3
tan 6 x
3
x5
  .
tan (  6 x )
3
x5
=  xlim
 0
tan 6 x
3
x5
  .
Answer:  
9.
sec 5  1
 0
7 2
lim

sec 5  1
sec 0  1
11
0
 Indeterminate Form
=
=
=
2
 0
7
0
0
0
lim

Applying L’Hopital’s Rule, we have that lim
 0
sec 5  1
=
7 2
5 sec 5 tan 5
 0
14
lim

Now, using Properties of Limits, we have that lim
 0
5 sec 5 tan 5
=
14
5
tan 5 
5
sec 5 tan 5

( lim sec 5 )  lim
lim

=
14   0
14   0

  0  
sec 5  1 , then
Since lim
 0
5
tan 5 

( lim sec 5 )  lim
 =
14   0
  0  
5
tan 5 
5
tan 5

(1)  lim
lim

=
14
14   0 
  0  
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
lim
  0
tan 5
0
 Indeterminate Form
=

0
Applying L’Hopital’s Rule again, we have that
5
tan 5
5
25
25
25
lim
lim 5 sec 2 5 =
lim sec 2 5 =
sec 2 0 =
=
14   0 
14   0
14   0
14
14
Thus, lim
 0
Answer:
10.
sec 5  1
5 sec 5 tan 5
5
tan 5
25
lim
= lim
=
=
.
2
 0
7
14
14   0 
14
25
14
4 x 2  3x  6
lim
x   5  2 x  3x 2

4 x 2  3x  6
 Indeterminate Form
lim
=
x   5  2 x  3x 2

Applying L’Hopital’s Rule, we have that
8x  3

4 x 2  3x  6
lim
 Indeterminate Form
lim
=
=
x   2  6x
x   5  2 x  3x 2

Applying L’Hopital’s Rule again, we have that
lim
x  
8x  3
8
4
lim
= x
= 
2  6x
6
3
Answer: 
4
3
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
11.
lim
6t  7
t2  9
lim
6t  7

 Indeterminate Form
=
2
t 9

t  
t  
Applying L’Hopital’s Rule, we have that
lim
t  
6t  7
=
t2  9
lim
t  
6
1
= 3 t lim  = 3 ( 0 )  0
2t
t
Answer: 0
12.
5x  3x 2
lim
x    4 x  11

5x  3x 2
 Indeterminate Form
lim
=
x    4 x  11

Applying L’Hopital’s Rule, we have that
5x  3x 2
lim
=
x    4 x  11
lim
x  
5  6x
1
lim ( 5  6 x ) = 
=
4
4 x  
Answer: 
13.
lim
12  8 w 6  3 w 10
( 4 w 2  5 ) 3 ( 2 w 4  3)
lim
12  8 w 6  3 w 10

 Indeterminate Form
=
2
3
4
( 4 w  5 ) ( 2 w  3)

w  
w  
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
You can apply L’Hopital’s Rule to this limit. However, it much easier to use
the methods of the MATH-1850 course to evaluate this limit.
12  8 w  3 w
=
( 4 w 2  5 ) 3 ( 2 w 4  3)
lim
12
8

3
w 10 w 4
=
1
2
3 1
4
(
4
w

5
)
(
2
w

3
)
w6
w4
lim
12
8

3
w 10 w 4
3
3  =
 1
 
2
 2 ( 4 w  5)   2  4 
w 
w
 
w  
w  
w  
1
12  8 w  3 w
w 10

1
( 4 w 2  5 ) 3 ( 2 w 4  3)
w 10
6
lim
6
10
lim
w  
10
=
lim
12
8
 4 3
10
w
w
3
3  =
 1 
2
3 
 2  ( 4 w  5)  2  4 
w 
w 

lim
12
8

3
w 10 w 4
3
5  
3  =

4  2  2  4 
w  
w 

w  
w  
003
3
3
= 
= 
3
( 4  0) ( 2  0)
64 ( 2 )
128
Answer: 
3
128
NOTE: I will let you do the TEN applications of L’Hopital’s Rule in order to
produce this answer.
14.
lim
x  4
lim
x  4
5 x  11  3
x 2
9 3
5 x  11  3
x 2
=
4 2
=
0
 Indeterminate Form
0
Applying L’Hopital’s Rule, we have that
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
1
( 5 x  11)  1 / 2 5
1/ 2
5 x  11  3
5
x
5 (2)
2
lim
= xlim
=
=
=
1
/
2
 4
1  1/ 2
x  4 ( 5 x  11 )
3
x 2
x
2
lim
x  4
10
3
Answer:
10
3
NOTE: To calculate this limit, without using L’Hopital’s Rule, would
require the algebra of rationalizing both the numerator and the denominator.
15.
3
t 2  49  2 3 3
t 5
3
t 2  49  2 3 3
=
t 5
lim
t  5
lim
t  5
3
 24  2 3 3
23 3  23 3
=
=
0
0
0
 Indeterminate Form
0
Applying L’Hopital’s Rule, we have that
3
lim
t  5
t 2  49  2 3 3
=
t 5
2
t
1 2
lim
( t  49 )  2 / 3 2 t =
=
2
5 3
3 t   5 ( t  49 ) 2 / 3
lim
t 
10 ( 2 ) 3 3
53 3
2
5
10
10 ( 24 ) 1 / 3

= 
= 
= 
= 
=
3 (  24 ) 2 / 3
3 ( 24 ) 2 / 3
3 ( 24 )
3 (6)
3 ( 24 )
53 3

18
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Answer: 
53 3
18
NOTE: This is the limit which is required to calculate the value of the
2
derivative of the function f ( t )  3 t  49 at t   5 using the definition of
derivative. It is ironic that we used the value of the derivative of this function
at t   5 in order to calculate this limit. To calculate this limit, without
using L’Hopital’s Rule, would require the algebra of rationalizing the
3
3
2
3
numerator. Since a  b  ( a  b ) ( a  a b  b ) , then in order to
rationalize the numerator of
3
3
t 2  49  2 3 3 in the fraction
t 2  49  2 3 3
, we would need to multiply the numerator and denominator
t 5
2
2
2
2
of the fraction by ( 3 t  49 )  ( 3 t  49 ) ( 2 3 3 )  ( 2 3 3 ) =
3
( t 2  49 ) 2  2 3 3 ( t 2  49 )  4 3 9 . Thus, we would have that
3
lim
t  5
3
lim
t  5
lim
t  5
lim
t  5
lim
t  5
t 2  49  2 3 3
=
t 5
t 2  49  2 3 3

t 5
3
( t 2  49 ) 2  2 3 3 ( t 2  49 )  4 3 9
3
( t 2  49 ) 2  2 3 3 ( t 2  49 )  4 3 9
( 3 t 2  49 ) 3  ( 2 3 3 ) 3
( t  5 ) ( 3 ( t 2  49 ) 2  2 3 3 ( t 2  49 )  4 3 9 )
t 2  49  24
( t  5 ) ( 3 ( t 2  49 ) 2  2 3 3 ( t 2  49 )  4 3 9 )
t 2  25
( t  5 ) ( 3 ( t 2  49 ) 2  2 3 3 ( t 2  49 )  4 3 9 )
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
=
=
=
=
lim
t  5
( t  5) ( t  5)
( t  5 ) ( 3 ( t 2  49 ) 2  2 3 3 ( t 2  49 )  4 3 9 )
t 5
lim
t  5 3
( t 2  49 ) 2  2 3 3 ( t 2  49 )  4 3 9
=
 10
3
=
 10
(  24 ) 2  2 3 3 (  24 )  4 3 9
=
3
24 2  2 3 3 ( 24 )  4 3 9
=
 10
 10
=
=
( 3 24 ) 2  2 3 3 ( 8  3 )  4 3 9
(2 3 3 ) 2  4 3 9  4 3 9
53 3
53 3
10
 10
5
= 
=  3
=  3
= 
=
6 ( 3)
43 9  43 9  43 9
6 9
6 27
12 3 9
53 3

18
16.
4x  9 
lim
x  3
3
3
21
5 x 2  19  4
4x  9 
lim
x  3
L’Hopital’s Rule was definitely easier.
21 
21
5 x 2  19  4
=
3
21
64  4
=
0
 Indeterminate Form
0
Applying L’Hopital’s Rule, we have that
4x  9 
lim
x  3
lim
x  3
3
21
1
( 4 x  9 )  1/ 2 4
2
= xlim
=
 3 1
5 x  19  4
( 5 x 2  19 )  2 / 3 10 x
3
2
2 ( 4 x  9 )  1/ 2
10
x ( 5 x 2  19 )  2 / 3
3
6 ( 4 x  9 )  1/ 2
3
( 5 x 2  19 ) 2 / 3
= xlim
= xlim
=
 3 10 x ( 5 x 2  19 )  2 / 3
5  3 x ( 4 x  9 ) 1/ 2
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
16 21
3 64 2 / 3
1 16
16

= 
=
=
5 3 21
105
5
21
5 21
Answer:
17.
16 21
105
sin 3 y  cos 5 y  e 3 y
lim
y  0
y2
sin 3 y  cos 5 y  e 3 y
011
0
lim
 Indeterminate Form
=
=
y  0
0
0
y2
Applying L’Hopital’s Rule, we have that
3 cos 3 y  5 sin 5 y  3 e 3 y
sin 3 y  cos 5 y  e 3 y
lim
= ylim
=
 0
y  0
2y
y2
303
0
 Indeterminate Form
=
0
0
Applying L’Hopital’s Rule again, we have that
3 cos 3 y  5 sin 5 y  3 e 3 y
3 (  3 sin 3 y )  5  5 cos 5 y  3  3 e 3 y
lim
= ylim
=
y  0
 0
2y
2
0  25  9
 34
 9 sin 3 y  25 cos 5 y  9 e 3 y
lim
=
=
=  17
y  0
2
2
2
Answer:  17
18.
ln x 3
lim
x  0  cot 6 x
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
ln x 3

lim 
 Indeterminate Form
=
x  0 cot 6 x

3 ln x
ln x 3
lim
Since x lim
=
, then applying L’Hopital’s Rule to the
x  0  cot 6 x
 0  cot 6 x
last limit, we have that
3
3 ln x
1
sin 2 6 x
x
lim
= x lim
=  x lim
2
x  0  cot 6 x
 0   6 csc 6 x
2  0
x
0
sin 2 6 x
 Indeterminate Form
lim 
=
x  0
0
x
Applying L’Hopital’s Rule again, we have that
1
1
sin 2 6 x

lim 2 sin 6 x ( cos 6 x ) 6 =  3 lim  sin 12 x =

lim 
=
x  0
2 x  0
2 x0
x
 3 (0)  0
NOTE: By the double angle formula for sine, which is sin 2  =
2 sin  cos  , then 2 sin 6 x cos 6 x  sin 12 x .
Answer: 0
19.
sin 2 4 t
lim
t  0
3t 2
sin 2 4 t
0
lim
 Indeterminate Form
=
t  0
3t 2
0
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
sin 2 4 t
1
sin 2 4 t
lim
Since tlim
=
, then applying L’Hopital’s Rule to the
 0
3t 2
3 t  0 t2
last limit, we have that
1
2 sin 4 t ( cos 4t ) 4
2
2 sin 4 t cos 4t
1
sin 2 4 t
lim
lim
lim
=
=
=
3 t0
2t
3 t0
t
3 t  0 t2
2
sin 8 t
lim
3 t0 t
NOTE: By the double angle formula for sine, 2 sin 4 t cos 4 t  sin 8 t .
t
sin 8 t
0
 Indeterminate Form
=
 0
t
0
lim
Applying L’Hopital’s Rule again, we have that
2
sin 8 t
2
16
16
16
16
lim
lim 8 cos 8 t =
lim cos 8 t =
cos 0 =
(1) =
=
3 t0 t
3 t0
3 t0
3
3
3
sin 2 4 t
1
2 sin 4 t ( cos 4t ) 4
2
sin 8 t
lim
lim
Thus, tlim
=
=
=
2
 0
3t
3 t0
2t
3 t0 t
16
16
lim cos 8 t =
3 t0
3
Answer:
20.
lim
  
lim
  
16
3

tan 3

ln sin
2

tan 3
tan 3
tan 
0
 Indeterminate Form
=
=
=


ln
1
0
ln sin
ln sin
2
2
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Applying L’Hopital’s Rule, we have that
tan 3
lim 
 =
  
ln sin
2
Since
lim  tan
  
3 sec 2 3
lim
 =
   1
cos
2
2

sin
2

   and
2
1 , then 6 lim  tan
  
lim
  

3 sec 2 3

6
lim
tan
sec 2 3
=
1


  
2
cot
2
2
lim  sec 2 3 = sec 2 3 = sec 2  = (  1) 2 =
  

sec 2 3    .
2
Thus, by L’Hopital’s Rule, we have that
lim
  

tan 3
  .

ln sin
2
Answer:  
21.
y3  8
lim
y   2 ln ( 4 y 2  15 )
0
y3  8
0
lim
 Indeterminate Form
=
=
2
y   2 ln ( 4 y
ln 1
 15 )
0
Applying L’Hopital’s Rule, we have that
2
3y2
 15
2 4y
lim
lim
3
y

= y  2
=
y  2
8y
8y
4 y 2  15
3
3
3
lim y ( 4 y 2  15 ) = (  2 ) ( 1 ) = 
8 y  2
8
4
y3  8
lim
=
y   2 ln ( 4 y 2  15 )
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
3
4
Answer: 
22.
lim
ln ( 7  2 x )
x2  6x  9
lim
ln ( 7  2 x )
ln 1
0
 Indeterminate Form
=
=
2
x  6x  9
9  18  9
0
x  3
x  3
Applying L’Hopital’s Rule, we have that
2
2
ln ( 7  2 x )
1
7  2x
2x  7
lim 2
lim
lim
lim
=
=
=
x  3 x
x  3 ( x  3) ( 2 x  7 )
x 3 2x  6
x  3 2 ( x  3)
 6x  9
Sign of y 
1
:
( x  3) ( 2 x  7 )

+

3
NOTE: The domain of the function y 
lim
x  3
Thus, xlim
 3
ln ( 7  2 x )
   and
x2  6x  9
lim
x  3
7
2
ln ( 7  2 x )
is the set of numbers
x2  6x  9
 7
given by (   , 3 )   3,  .
 2
Thus,

ln ( 7  2 x )
 .
x2  6x  9
ln ( 7  2 x )
= DNE.
x2  6x  9
Answer: DNE
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Now, we will study the indeterminate forms of 0   , 1  , 0 0 ,  0 , and    .
Using algebra, we may write the indeterminate form 0   as either the
0

indeterminate form
or the indeterminate form .
0

Using logarithmic functions, we may write the indeterminate forms 1  , 0 0 , and  0
as the indeterminate form 0   .
Examples Find the following limits, if they exist.
1.
lim x 2 e 5 x
x  
Since
lim e 5 x  0 , then
x  
lim x 2 e 5 x =   0  Indeterminate Form
x  
e 5x
x 2 e 5x =
Since x e =  2 , then we could write x lim



x
0
indeterminate form of this last limit is .
0
2
2
Since x e
5x
5x
=
x2
2
e  5x
x e
, then we could write x lim
 
5x

indeterminate form of this last limit is
.

Applying L’Hopital’s Rule to
lim
x  
e 5x
=
x2
lim
x  
lim
x  
=
lim
x  
lim
x  
e 5x
. The
x2
x2
e  5x
. The
e 5x
, we have that
x2
5e 5 x
5
5e 5 x
=  x lim
 2x 3
2   x3
0
5e 5 x
Since x lim
=
, then we can apply L’Hopital’s Rule again.

3
  x
0
However, since the exponent on the x in the denominator will always stay
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
negative and the numerator will always contain the exponential function, we
will not be able to determine an answer for the limit.
Let’s apply L’Hopital’s Rule to
form
lim
x  
lim
x  
lim
x  

. Thus, we have that

x2
e  5x
x
e  5x
lim
=
x  
x2
, which has the indeterminate
e  5x
2x
2
x
lim
 5x = 

 5e
5 x    e 5x

 Indeterminate Form

=
Apply L’Hopital’s Rule again, we have that

2
1
2
x
2
1
2

lim
lim
lim
lim e 5 x =
=
=
=

5
x

5
x

5
x
x



x



x



x
5
 5e
5
e
25
e
25   
2
(0)  0
25
Thus,
2
lim x e
5x
lim
=
x  
x2
x  
e  5x
= 
2
x
2
lim
lim e 5 x  0
=
 5x
x



x
5
e
25   
Answer: 0
2.
lim
t  (   / 2) 
Since
sec t ln tan
lim
t  (   / 2) 
5t
2
sec t    and
ln  1 = 0, then
lim
t  (   / 2) 
lim
t  (   / 2)
sec t ln tan
5t
2

ln tan
5t
 5 
 ln tan  
 =
2
 4 
=    0  Indeterminate Form
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
ln tan
Since sec t ln tan
lim
t  (   / 2) 
form of
5t
2
sec t ln tan
=
5t
2
5t
2
5t
2
, then we can write
cos t
ln tan
=
1
sec t
5t
2
, which has an indeterminate
cos t
ln tan
=
lim
t  (   / 2) 
0
.
0
Applying L’Hopital’s Rule, we have that
5t
2
cos t
ln tan
lim
t  (   / 2) 
=
lim
t  (   / 2) 
5
5t
sec 2
2
2
5t
tan
5
2
= 2
 sin t
5t
2
5t =
sin t tan
2
sec 2
lim
t  (   / 2) 
 5 
sec 2  

2
5
4 
(

2
)

5
5
 



(2) =  5
=
=
2
  
 5 
2
(

1
)
(

1
)
2
sin    tan  

 2
 4 
Answer:  5
3.
lim  sin 3 x ln x 2
x  0
Since
lim  ln x 2    and
x  0
lim sin 3 x  0 , then
x  0
lim  sin 3 x ln x 2 =
x  0
0     Indeterminate Form
2
Since sin 3 x ln x
ln x 2
2 ln x
=
=
, then we can write
1
csc 3 x
sin 3 x
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
lim  sin 3 x ln x 2 =
x  0
lim
x  0
2 ln x

, which has an indeterminate form of
.
csc 3 x

Applying L’Hopital’s Rule, we have that
2
2
1
2 ln x
x
lim 

lim 
lim 
=
=
=
x  0 csc 3 x
x  0  3 csc 3 x cot 3 x
3 x  0 x csc 3 x cot 3 x

2
sin 3 x  
2
sin 3 x tan 3 x

  lim 
lim 
  lim  tan 3 x 
=
3x0
x x 0
3 x0
x

lim 
x  0
sin 3 x
0
 Indeterminate Form
=
x
0
Applying L’Hopital’s Rule again, we have that
lim 
x  0
sin 3 x
=
x
lim 3 cos 3x  3
x  0
tan 3 x  tan 0  0 , then 
Since x lim
 0

2
sin 3 x
 lim 
3x0
x


  lim  tan 3 x  =

x 0
2
( 3) ( 0 )  0
3
Answer: 0
4.
lim  cot 
  0
Since
lim cot    , then
  0
lim  cot  = 0    Indeterminate Form
  0
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860


 cot  =
Since  cot  = 1
=
, then we can write  lim
 0
tan 
cot 

0
lim
,
which
has
an
indeterminate
form
of
.
  0 tan 
0

Applying L’Hopital’s Rule, we have that
lim
  0


=
tan 
lim
  0

1
=
sec 2 
lim  cos 2   1
  0
Answer: 1
5.
 6 
lim x 3 sin  3 
x  
x 
6 
 6 

 6 
sin  3  = sin  lim 3  = sin 0  0 , then lim x 3 sin  3 
Since xlim
x  
 
x 
x 
x x 
=   0  Indeterminate Form
 6 
sin  3 
x 
 6 
 6 
3
3
lim
x
sin
x
sin
 3 =


Since
=
,
then
we
can
write
3
1
x  
x 
x 
3
x
 6 
sin  3 
x 
0
lim
,
which
has
an
indeterminate
form
of
.
x  
1
0
x3
Applying L’Hopital’s Rule, we have that
 6 
 6 
 6 
 1 
 6 
cos  3   D x  3 
cos  3   6 D x  3 
sin  3 
x 
x 
x 
x 
x 
lim
lim
lim
= x
= x
=
x  
1
 1 
 1 
D
D




x
x
3
3
x3
x 
x 
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
6 
 6 

6 lim cos  3  = 6 cos  lim 3  = 6 cos 0  6 (1)  6
x  
x 
x x 
Answer: 6
6.
lim
y  (   / 2) 
Since
( sec 3 y  tan 3 y )
lim
y  (   / 2) 
lim
y  (   / 2) 
sec 3 y    and
lim
y  (   / 2) 
tan 3 y    , then
( sec 3 y  tan 3 y ) =    (   ) =     Indeterminate
Form
lim
( sec 3 y  tan 3 y ) =
lim
1  sin 3 y
cos 3 y
y  (   / 2) 
y  (   / 2) 
Since
then
lim
y  (   / 2)
lim
y  (   / 2) 

y  (   / 2) 
y  (   / 2) 
 1
sin 3 y


 cos 3 y cos 3 y

 =

 3 
 3 
sin 3 y  sin  
lim  cos 3 y  cos  
  1 and
  0,
y  (   / 2)
 2 
 2 
1  sin 3 y
0
 Indeterminate Form
=
cos 3 y
0
Applying L’Hopital’s Rule to
lim
lim
1  sin 3 y
=
cos 3 y
lim
lim
y  (   / 2) 
y  (   / 2) 
1  sin 3 y
, we have that
cos 3 y
 3 cos 3 y
=
 3 sin 3 y
lim
y  (   / 2) 
Answer: 0
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
cot 3 y  0
7.
lim [ ln ( 2 x  3)  ln (5 x  4 ) ]
x  
ln ( 2 x  3)   and lim ln (5 x  4 )   , then
Since xlim
 
x  
lim [ ln ( 2 x  3)  ln (5 x  4 ) ] =     Indeterminate Form
x  
ln
lim [ ln ( 2 x  3)  ln (5 x  4 ) ] = xlim
 
x  

2x  3 
2x  3
 =
= ln  xlim
  5x  4 
5x  4


2
2

ln  lim  = ln
5
x5
2x  3

has an indeterminate form of
, then we can
5x  4

apply L’Hopital’s Rule.
NOTE: Since xlim
 
2
5
Answer: ln
8.
lim ( 6 x 2  7 x  9 
x  
Since
lim
x  
6 x 2  11 )
6 x 2  7 x  9   and
lim
x  
6 x 2  11   , then
lim ( 6 x 2  7 x  9 
6 x 2  11 ) =     Indeterminate Form
lim ( 6 x 2  7 x  9 
6 x 2  11 ) =
lim ( 6 x  7 x  9 
6 x  11 ) 
x  
x  
2
x  
lim
x  
2
6 x 2  7 x  9  ( 6 x 2  11)
6x2  7x  9 
6 x 2  11
=
6x2  7x  9 
6 x 2  11
6x2  7x  9 
6 x 2  11
lim
x  
=
 7 x  20
6x2  7x  9 
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
6 x 2  11
=
1
 7 x  20
 x =
2
2
6 x  7 x  9  6 x  11  1
x

lim
x  
7
lim
x  
1
(6 x 2  7 x  9) 
2
x
7
lim
x  
7
9.
20
x
7
9
6  2 
x x
=
7 6
12
Answer:
7 6
12
2 6
20
x
11
6 2
x
=
1
2
( 6 x  11)
x2
=
70
600 
60
=
7
6 
lim ( t 2  ln t 2 )
t  
Since
t
lim t 2   and
 
lim ln t 2   , then
t  
t
lim ( t 2  ln t 2 ) =
 
    Indeterminate Form
lim ( t  ln t ) =
 
2
t
Now, consider
t

ln t 2
lim t  1  2
 
t

2
2
t




ln t 2
 Indeterminate Form
lim
=
  t2

Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
6
=
ln t 2
Since t lim  2 =
t
limit, we have that
lim
t  
Thus,
Thus,
Since
Thus,
2 ln t
=
t2
t
t
t
lim
t  
2
lim t =
   2t
ln t 2
lim
=
  t2
lim
lim t   and
t  
t
t  
1
0
t2
2 ln t
 0.
t2

 = 1  0  1 .

2
t

ln t 2

lim 1  2
  
t

lim ( t  ln t ) =
 
2
lim
t  

ln t 2

lim 1  2
  
t

2 ln t
, then applying L’Hopital’s Rule to this last
t2

ln t 2

lim t  1  2
 
t

2
2
t

  1 , then


ln t 2

lim t  1  2
 
t

2
t

  

Answer: 
10.
1

lim    log 3 (  y ) 
y  0
y

Since
lim
y  0
1
   and
y
lim log 3 (  y )    , then
y  0
1

lim    log 3 (  y )  =     Indeterminate Form
y  0
y

1

lim    log 3 (  y )  =
y  0
y

lim
y  0
1
[1  y log 3 (  y ) ]
y
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860

   .

Now, consider
Since
lim y log 3 (  y ) = 0     Indeterminate Form
y  0
lim y log 3 (  y ) =
y  0
lim 
y  0
log 3 (  y )
, then applying L’Hopital’s Rule
1
y
to this last limit, we have that
lim 
y  0
Thus,
Since
lim
y  0

Thus,
log 3 (  y )
=
1
y
lim
y  0
1
 y ln 3
1
1

lim
y

(0)  0
=
=
1
ln 3
ln 3 y  0 
 2
y
lim y log 3 (  y )  0 . Thus,
y  0
lim
y  0
1
   and
y
lim [1  y log 3 (  y ) ] = 1  0  1 .
y  0
lim [1  y log 3 (  y ) ] = 1, then
y  0
1
[1  y log 3 (  y ) ]    .
y
1

lim    log 3 (  y )  =
y  0
y

lim
y  0

1
[1  y log 3 (  y ) ]   
y
Answer:  
f ( x ) g ( x ) if the indeterminate form is 1  , 0 0 , and
Guidelines for evaluating xlim
 a
0.
1.
2.
g( x )
Let y  f ( x )
Take the natural logarithm of both sides of the equation: ln y  g ( x ) ln f ( x )
Of course, you can use any base for the logarithm. The natural logarithm is
the easiest to use.
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
3.
ln y if it exists.
Find xlim
 a
4.
ln y  L , then lim f ( x ) g ( x ) = lim y = e L .
If xlim
x  a
 a
x  a
x
NOTE: Since the natural exponential function y  e is continuous for all
ln y
y =
real numbers and e  y for all positive real numbers, then xlim
 a
lim ln y
lim e ln y = e x  a
x  a
ln y ) = exp ( L ) = e L .
= exp ( xlim
 a
Examples Find the following limits, if they exist.
1.
lim ( 9 x 2  1) 1 / x
2
x  0
( 9 x 2  1)  1 and lim
Since xlim
x  0
 0
1
2
1/ x 2


lim
(
9
x

1
)
, then x  0
=
x2
1   Indeterminate Form.
Let y  ( 9 x  1)
2
1/ x 2
1
ln ( 9 x 2  1)
2
. Then ln y  2 ln ( 9 x  1) =
.
x
x2
0
ln ( 9 x 2  1)
Now, find xlim
,
which
has
an
indeterminate
form
of
.
 0
0
x2
Applying L’Hopital’s Rule, we have that
18 x
9
18 x
1
ln ( 9 x  1)
9x 2  1
lim

lim
9
lim
lim
=
=
=
2
2
2
x  0 9x
x  0 9x
x  0
x  0
1
 1 2x
2x
x
2
ln ( 9 x 2  1)
9
ln y = lim
Thus, xlim
x  0
 0
x2
y = lim ( 9 x 2  1) 1 / x = e 9
Thus, xlim
 0
x  0
2
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Answer: e 9
2.
lim  (1  tan 5 t ) csc 3 t
t  0
(1  tan 5 t )  1 and
Since t lim
 0
lim csc 3t    , then
t  0
lim  (1  tan 5 t ) csc 3 t = 1    Indeterminate Form.
t  0
csc 3 t
Let y  (1  tan 5t )
. Then ln y  csc 3 t ln (1  tan 5 t ) =
Now, find t lim
 0
ln (1  tan 5 t )
.
sin 3 t
ln (1  tan 5 t )
0
, which has an indeterminate form of .
sin 3 t
0
Applying L’Hopital’s Rule, we have that
 5 sec 5 t
ln (1  tan 5 t )
5
sec 5 t
1  tan 5 t
lim 

lim
lim
= t  0
=
=
t  0
sin 3 t
3 t  0  (1  tan 5 t ) cos 3 t
3 cos 3t

5
1
5

= 
3 (1  0 ) (1)
3
ln y = lim 
Thus, t lim
t  0
 0
ln (1  tan 5 t )
5
= 
sin 3 t
3
y = lim  (1  tan 5 t ) csc 3 t = e  5 / 3
Thus, t lim

t  0
 0
 5/3
Answer: e
3.
1

lim  1  
x  
x

x
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
1

lim  1  
x  
x

x

= 1  Indeterminate Form.
1

ln  1  
x

1
1


ln
y

x
ln
1

y

1





Let
. Then
=
.
1
x
x


x
x
1

ln  1  
x

0
lim
Now, find x  
, which has an indeterminate form of .
1
0
x
Applying L’Hopital’s Rule, we have that
1

Dx  1  
x

1
1

1

Dx  
ln  1  
1  
x
x

x

lim
lim
lim
= x
= x
x  
1
1 1 =
1
Dx  
1


 Dx  
x
x x
x

x
1
1
1
=
 
1
1

0
1
x
lim
1

ln y = lim x ln  1    1
Thus, xlim
x  
 
x

1

y = lim  1  
Thus, xlim
x  
 
x

x
= e
Answer: e
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
x
x
1
1


1   = e , then we can use the expression  1  

NOTE: Since xlim
 
x
x


to generate approximations for the number e . You can use your calculator to
1



verify that  1 
1
,
000
,
000


4.
t
t
4

lim  1  
 
t 

2t
4

lim  1  
 
t 

2t
1, 000, 000
 2.71828 .

 Indeterminate Form.
= 1
4

2
ln
1



2t
t 

4
4


Let y   1   . Then ln y  2 t ln  1   =
.
1
t 
t 


t
Now, find
t
4

2 ln  1  
t 

0
lim
, which has an indeterminate form of .
 
1
0
t
Applying L’Hopital’s Rule, we have that
t
4

2 ln  1  
t 

lim
= 2 t lim 
 
1
t
4

Dt  1  
t 

4

 4
Dt   
1  
t 

 t 
2
lim
= t   
4  1 =
1
Dt  
1


 Dt  
t  t
t

1
 4 Dt  
1
t
1
2 lim

8
lim

8

= 8
t   
t  
4 =
4  1 =
1

0
1
 1   Dt  
t
t  t

Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
4

ln y = lim 2 t ln  1     8
Thus, xlim
x  
 
t 

y =
Thus, xlim
 
t
Answer: e  8 or
5.
4

lim  1  
 
t 

2t
= e8
1
e8
lim  x x
x  0
lim  x x = 0 0  Indeterminate Form.
x  0
ln x
Let y  x . Then ln y  x ln x = 1 .
x
x
Now, find
lim
x  0
ln x

,
which
has
an
indeterminate
form
of
.
1

x
Applying L’Hopital’s Rule, we have that
1
ln x
lim 
lim  x =  lim 1  x 2 =  lim x  0
=
1
1
x  0
x  0
x  0 x
x  0
 2
x
x
ln y =
Thus, xlim
 
y =
Thus, xlim
 
lim x ln x  0
x  0
lim  x x = e 0  1
x  0
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Answer: 1
6.
3t
lim ( e )
5
tan  
 t 
t  
5
Since t lim  e  0 and t lim  tan   = tan 0  0 , then
t
0
= 0  Indeterminate Form.
3t
Let y  ( e )
3t
5
tan  
 t 
3t
lim ( e )
5
tan  
 t 
t  
5
5
3t
ln
y

tan
ln
e
3
t
tan


 .
. Then
=
t
t
5
lim 3 t tan   , which has an indeterminate form of    0 .
t  
t
5
tan  
t
5
lim 3 t tan   = 3 t lim 
, which has an indeterminate form
1
 
t
t
Now, find
Since
of
t
0
, then we can applying L’Hopital’s Rule to this last limit. Thus,
0
5 5
5
1
5
sec 2   D t  
sec 2   5 D t  
tan  
t t
t
t
t
3
lim
3
lim
3 lim
= t  
= t  
=
t  
1
1
1
Dt  
Dt  
t
t
t
5
5

15 lim sec 2   = 15 sec 2  lim
 = 15 sec 2 0  15
t  
t



t
t

Thus,
Thus,
t
t
lim ln y =
 
lim y =
 
t
5
lim 3 t tan    15
 
t
3t
lim ( e )
t  
5
tan  
 t 
= e 15
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Answer: e 15
7.
x6
lim ( e )
 a 
sin  6 
 x 
x  
, where a is a constant
 a 
sin  6 
6
 a 
e   and lim sin  6  = sin 0  0 , then lim ( e x )  x 
Since xlim
x  
 
x  
x 
0
=   Indeterminate Form.
x6
Let y  ( e )
x6
 a 
sin  6 
 x 
 a 
 a 
x6
6
. Then ln y  sin  6  ln e = x sin  6  .
x 
x 
 a 
x 6 sin  6  , which has an indeterminate form of   0 .
Now, find xlim
 
x 
 a 
sin  6 
x 
 a 
x 6 sin  6  = xlim
Since xlim
, which has an indeterminate form
 
1
 
x 
x6
0
of , then we can applying L’Hopital’s Rule to this last limit. Thus,
0
 a   a 
 a 
 1 
 a 
cos  6  D x  6 
cos  6  a D x  6 
sin  6 
x  x 
x 
x 
x 
lim
lim
lim
= x
= x
=
x  
1
 1 
 1 
D
D




x
x
6
6
x6
x 
x 
a 
 a 

a lim cos  6  = a cos  lim 6  = a cos 0  a (1)  a
x  
x 
x x 
 a 
6
ln y = lim x sin  6   a
Thus, xlim
x  
 
x 
x6
y = lim ( e )
Thus, xlim
 
x  
 a 
sin  6 
 x 
= ea
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Answer: e a
g ( x )  L and lim h( x )  L and if
Theorem (The Sandwich Theorem) If xlim
 a
x  a
g ( x )  f ( x )  h( x ) for all x in a deleted neighborhood of x  a , then
lim f ( x )  L .
x  a
f ( x )  L , we need to show that
Proof Let   0 . In order to show that xlim
 a
there exists a   0 such that f ( x)  L   whenever 0  x  a   .
Let { x : 0  x  a   a } = ( a   a , a )  ( a , a   a ) be a deleted neighborhood
of x  a for which g ( x )  f ( x )  h( x ) . Thus, g ( x )  f ( x )  h( x ) whenever
0  x  a  a
g ( x )  L , then there exists a  g  0 such that g ( x)  L  
Since xlim
 a
whenever 0  x  a   g . Since g( x)  L       g ( x )  L   
L    g ( x )  L   , then L    g ( x )  L   whenever 0  x  a   g .
Thus, L    g (x ) whenever 0  x  a   g .
h( x )  L , then there exists a  h  0 such that h( x)  L  
Since xlim
 a
whenever 0  x  a   h . Since h( x)  L       h( x )  L   
L    h( x )  L   , then L    h( x )  L   whenever 0  x  a   h .
Thus, h( x )  L   whenever 0  x  a   h .
Let  = min { a ,  g ,  h } . Then    a ,    g , and    h .
Since    a , then { x : 0  x  a   }  { x : 0  x  a   a } . Since
g ( x )  f ( x )  h( x ) whenever 0  x  a   a , then g ( x )  f ( x )  h( x )
whenever 0  x  a   .
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Since    g , then { x : 0  x  a   }  { x : 0  x  a   g } . Since
L    g (x ) whenever 0  x  a   g , then L    g (x ) whenever
0 x  a .
Since    h , then { x : 0  x  a   }  { x : 0  x  a   h } . Since
h( x )  L   whenever 0  x  a   h , then h( x )  L   whenever
0 x  a .
Thus, L    g ( x )  f ( x )  h( x )  L   whenever 0  x  a   . Thus,
L    f ( x )  L   whenever 0  x  a   . Since L    f ( x )  L  
f ( x )  L   . Thus,
0  x  a   . Thus, lim f ( x )  L .
x  a
    f ( x)  L   
f ( x )  L   whenever
COMMENT: Some people use the phrase Squeeze Theorem instead of Sandwich
Theorem.
Examples Find the following limits, if they exist.
1.
lim
x  
sin x
x
Since  1  sin x  1 for all x and x  0 (since x is approaching positive
1 sin x 1
 for all x  0 .
infinity), then  
x
x
x
1
sin x
 1
   0 and lim
 0 , then lim
 0 by the

Since xlim
 
x   x
x  
x
 x
Sandwich Theorem.
Answer: 0
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
2.
lim
cos 2 t
3t2
lim
cos 2 t
1
cos 2 t
lim
=
2
3t
3 t   t2
t  
t  
2
Since  1  cos 2 t  1 for all t and t  0 for t approaching negative
1
cos 2 t
1

infinity, then  2 
for all t  0 .
t
t2
t2
 1 
Since t lim    2   0 and
 t 
Sandwich Theorem.
Thus,
lim
t  
lim
t  
1
 0 , then
t2
lim
t  
cos 2 t
 0 by the
t2
cos 2 t
1
cos 2 t
1
lim
(0)  0
=
=
2
3t
3 t   t2
3
Answer: 0
3.
lim
x  
lim
x  
 3
 5 sin 
 x

7x3




 3
 5 sin 
 x

7x3






sin
NOTE:


3
x
 3
sin 
 x
5

=  x lim
7  
x3





 is defined for all x  0 and is undefined if x  0 .


Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860

Since  1  sin 


  1 for all x  0 and x 3  0


 3
sin 
 x
1

approaching negative infinity), then  3 
x
x3
 3 

sin 

 x 
1
1




for all x  0 .
x3
x3
x3
3
x
1
 1 
 0 and lim   3   0 , then
3
x  
x
 x 
the Sandwich Theorem.
Since xlim
 
Thus,
lim
x  
 3
 5 sin 
 x

7x3




(since x is



  1 
x3

sin 


lim
x  
 3
sin 
 x
5

=  x lim



7
x3




3
x
x3
= 



 0
by
5
(0)  0
7
Answer: 0
4.
4
cos 2  
 
lim
  
5
4
2 4 
NOTE: cos   and hence cos   is defined for all   0 .
 
 
4
2 4 
Since  1  cos    1 for all   0 , then 0  cos    1 . Since
 
 
4
cos 2  
   1
 5  0 for  approaching positive infinity, then 0 
for all
5
5
  0.
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
4
cos 2  
1
   0
0  0 and lim 5  0 , then lim
Since  lim
by the
   
  
 
5
Sandwich Theorem.
Answer: 0
Copyrighted by James D. Anderson, The University of Toledo
www.math.utoledo.edu/~anderson/1860
Related documents