Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Math 265 Final Exam (Simulated) – Solutions Take note of how the points are assigned in each question. a) By the Product and chain Rules. y' cos x cos(sin x 2 ) sin x( sin(sin x 2 ) cos( x 2 )(2 x)) (4 pts) y' cos x cos(sin x 2 ) 2 x sin x cos( x 2 ) sin(sin x 2 ) b) By the general power and quotient rules. 1 1 x3 y ' 3 1 x 2 2 / 3 1 1 x2 y ' 3 1 x 3 2/3 3 x 3 (1 x 2 ) 2 x(1 x 3 ) (1 x 2 ) 2 (4 pts) x(3x x 3 2) (1 x 2 ) 2 b) By the General power rule. y' 1 d (1 1 x ) 1 / 2 1 (1 x)1 / 2 2 dx y' 1 1 2 1 1 x 2 1 x 4 1 1 x 1 x 1 (2 pts) (2 pts) d) By the quotient and general power rules. 1 2 2 1 / 2 2 x 1) 2 x ( x 2 x 8) 2 x 1( x 1) 2 y' ( x 2 2 x 8) 2 (4 pts) e) By the chain and quotient rules x 1 x 1 ( x 2) ( x 1) y' 2 sec 2 tan ( x 2) 2 x 2 x 2 x 1 x 1 6 y' sec 2 tan 2 x 2 x 2 ( x 2) (4 pts) 2. a) cos 62 = cos(60 2 ) cos 3 90 2 Let f ( x) cos x , a 60 , a 2 = 3 180 90 cos 62 0 f (a) f ' (a)x cos sin 3 3 90 cos 62 0 1 3 1 3 2 2 90 2 180 (1 pt) (1 pt) (1 pt) (1 pt) cos 62 0 cos cos sin 3 90 3 3 90 #2. b) 16.4 = 16 0.4 Let f ( x) x , a 16, a 0.4 16.4 f (a) f ' (a)x 16 16.4 4 (1 pt) (1 pt) 4 2 16 10 1 (2 pts) 1 1 81 4 5(4) 20 20 3. By definition of differentiation cos( x h) cos( x) sin( x h) sin( x) lim h 0 h 1 cos( x h) cos( x) lim h 0 h sin( x h) sin( x) (1 pt) 1 cos( x h)sin( x) cos( x)sin( x h) lim h 0 h sin( x h)sin( x) 1 1 cos( x h)sin( x) cos( x)sin( x h) lim h 0 sin( x) h sin( x h) 1 1 1 cos( x h) sin( x) cos( x) sin( x h) lim lim sin( x) h0 sin( x h) h0 h 1 (1 pt) 1 1 1 (1 pt) * lim cos( x h)sin( x) cos( x)sin( x h) sin( x) sin( x 0) h0 h 1 1 lim cos( x h)sin( x) cos( x)sin( x h) 2 h 0 sin ( x) h 1 1 lim cos( x) cos(h) sin( x) sin( h) sin( x) cos( x) sin( x) cos( h) cos( x) sin(h) 2 sin ( x) h0 h 1 1 cos( x) sin( x) cos(h) sin( x) sin( x) sin( h) lim 2 sin ( x) h0 h cos( x) sin( x) cos(h) cos( x) cos( x) sin( h) 1 1 cos( x)sin( x) cos(h) sin( x)sin( x)sin(h) lim sin 2 ( x) h0 h cos( x)sin( x) cos(h) cos( x) cos( x)sin(h) 1 1 lim sin( x)sin( x)sin(h) cos( x) cos( x)sin(h) 2 sin ( x) h0 h 1 1 lim sin( x)sin( x) cos( x) cos( x) sin(h) 2 sin ( x) h0 h 1 1 2 lim sin 2 ( x) cos 2 ( x) sin(h) h 0 sin ( x) h 1 1 2 lim 1 sin(h) h 0 sin ( x) h 1 sin(h) 2 lim sin ( x) h0 h 1 2 *1 sin ( x) 1 2 sin ( x) csc2 ( x) 4 1) We find the domain and range of the function f ( x) x is in domain x 2 1 0 ( x 1)( x 1) 0 x 1 0 and x 1 0 x 1 and x 1 Domain is all numbers except x 1 and x -1 (1 pt) (1 pt) (1 pt) x2 . x2 1 (1 pt) 2) (0,0) is the x and y intercepts (1 pt) 2x 3) f ' ( x) 2 , hence f ( x) 0 if x = 0, and the critical points are 0, -1, 1. We ( x 1) 2 have that f ' ( x) 0 for x < -1 and -1 < x < 0; f ' ( x) 0 for 0 < x < 1 and x > 1. On the real line, we have (2 pts) U 0 U -1 0 1 4) We find f (x) . x f ( x) 2 2 2 2 1 x 2( x 2 1) 2 x 2 x 1 4 2 ( x 2 1)( 3x 2 1) x 2 1 3x 2 1 4 ( x 1)( x 1) 3 2 2 2 ( x 2 1)( x 2 1) x 2 2 x x 2 1 4 3x 2 1 x 2 1 3 3x 2 1 ( x 1) 3 ( x 1) 3 U U 1 -1 Critical points of f (x) are 1 and –1. We put the critical points on a real line below. When x is on right most interval 1, , all the factors of f (x) are positive. So the sign of f (x) is positive. Since ( x 1)3 and ( x 1)3 have odd degree, if x crosses critical points, the sign of f (x) changes. Thus we sketch the sign of f (x) on real below. Sign of f + U -1 - U + 1 Thus we have the diagram below. (2 pts) the real line indicating where function f is concave downward or upward U U -1 1 5) We use all the information in the above steps to sketch the graph of y below. x2 as x2 1 (4 pts) #4b. 1) domain all real numbers 2) f ( x) ( x) sin( x) x sin( x) (1 pt) x sin( x) f ( x) The function is odd function so the graph of y x sin x is symmetric with respective to origin (0, 0) . (1 pt) 2) f ( x) x sin x f ( x) 1 cos x 0 Thus the graph is increasing on , . (1 pt) 3) f ( x) sin x f ( x) sin x 0 sin x 0 2n x 2 2n y x sin x is concave upward on the intervals 2n , 2 2n for integer n . y x sin x is concave downward on the intervals 2n , 2n for integer n . (2 pts) The graph is (5 pts) 5. Find all maxima and minima of the following functions on the indicated intervals. 5 5 1 4 4 1 a) f’(x) 2* x 3 5* x 3 3 3 1 10 2 20 13 10 23 10 1 1 x3 x x 2x 3 x 3 x 3 2 3 3 3 3 f ( x) 0 10 1 1 x3 x3 2 0 3 1 1 x3 x3 2 0 1 1 x 3 0 or x 3 2 x 0 or x 8 (3 pts) To find maximum or minimum value we check x 1, x 0, x 8, x 20 5 4 f (1) 2(1) 3 5(1) 3 5 4 2(1) 3 5(1) 3 2 5 7 5 4 f (0) 2(0) 3 5(0) 3 0 5 4 f (8) 2(8) 3 5(8) 3 2(2)5 5(2)4 (2)4 2(2) 5 (2)4 4 5 16 5 4 f (20) 2(20) 3 5(20) 3 23.2807582317404 Thus the minimum value is f (8) 16 5 (1 pt) (1 pt) 4 and the maximum value is f (20) 2(20) 3 5(20) 3 23.2807582317404 . #5b f’(x) 1 sin x 0 and sin x 1 , this is true for any real x. (2 pt) The function is continuous and increasing on the real line. Hence Maximum value is f (2 ) 2 cos( 2 ) 2 1 Minimum value is f ( ) cos( ) 1 6. Compute the following integrals: a) ( x 2 x) 3x dx = 3 x 5 / 2 x 3 / 2 dx 2x 7 / 2 2x 5 / 2 3 C 3 7 5 d sin x cos x b) since dx sin 2 x sin x cos xdx = C 2 b x2 1 b sin( 2 x) a b) x cos(2 x)dx = a 2 2 2 2 x sin( 2 x) b b sin( 2b) a 2 sin( 2a) a 2 2 2 (1 pt) (1 pt) (1 pt) (1 pt) (2 pts) (1 pt) (2 pts) (2 pts) (2 pts) (1 pt) 6. a) 1) We sketch the graph of y x and y 2 x 2 . (2 pts) 2) We find the x values where two curves meet. y x and y 2 x 2 x 2 x 2 (2 pts) x 2 x 2 0 ( x 2)( x 1) 0 x 2 0 or x 1 0 x 2 or x 1 3) We find the area of the region. Let A be the area of the region. Then we know: 1 A (2 x 2 ) x dx 2 1 1 1 1 x 2 x 2 dx x 3 x 2 2 x 2 2 3 2 1 1 1 1 1 1 1 1 1 1 x 3 x 2 2 x 2 x 3 2 x 2 2 2x 2 3 2 3 2 2 2 1 1 1 1 13 (2) 3 12 (2) 2 21 (2) 9 (3) 2 3 3 2 3 2 A 3 3 9 6 2 2 8. Perimeter P 2 x 2 y and P( x) 2 x ( 4pts) xy = 220 thus y 440 440 and P ' ( x) 2 2 = 0 for x = 2 55 x x 220 x (2 pts) (2 pt) 880 0 for any positive x. Hence the perimeter is minimum when the x3 dimensions are x = 2 55 and y 220 = 2 55 . The perimeter is 8 55 (2 pts) P' ' ( x) 9. x 0 d d d sin( t 2 ) dt = sin( t 2 )dt sin( t 2 )dt dx 2 x dx 0 dx 2 x x (1 pt) 2x d d sin( t 2 )dt sin( t 2 )dt dx 0 dx 0 (1 pt) = sin( x 2 ) 2 sin(( 2 x) 2 ) sin( x 2 ) 2 sin( 4 x 2 ) (2 pts) 10. x1 1 , 2 1 4 x2 1 1 , 6 3 3 x3 4 287(310) 41.9312 3 81(27) (1 pt) (2 pts) (2 pts)