Download SampleFinExamSol

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Math 265 Final Exam (Simulated) – Solutions
Take note of how the points are assigned in each question.
a) By the Product and chain Rules.
y'  cos x cos(sin x 2 )  sin x( sin(sin x 2 ) cos( x 2 )(2 x))
(4 pts)
y'  cos x cos(sin x 2 )  2 x sin x cos( x 2 ) sin(sin x 2 )
b) By the general power and quotient rules.
1  1  x3 

y '  
3  1  x 2 
2 / 3
1 1 x2 

y '  
3  1  x 3 
2/3
3 x 3 (1  x 2 )  2 x(1  x 3 )
(1  x 2 ) 2
(4 pts)
x(3x  x 3  2)
(1  x 2 ) 2
b) By the General power rule.


y' 
1
d
(1  1  x ) 1 / 2
1  (1  x)1 / 2
2
dx
y' 
 1 
1

 
2 1 1 x  2 1 x  4 1 1 x 1 x
1
(2 pts)
(2 pts)
d) By the quotient and general power rules.


1 2
 2
1 / 2
2
 x  1) 2 x ( x  2 x  8)  2 x  1( x  1)
2

y'  
( x 2  2 x  8) 2
(4 pts)
e) By the chain and quotient rules
 x  1   x  1  ( x  2)  ( x  1)
y'  2 sec 2 
 tan 

( x  2) 2
 x 2  x 2
 x 1   x 1   6
y'  sec 2 
 tan 

2
 x  2   x  2  ( x  2)
(4 pts)
  
2. a) cos 62 = cos(60   2  )  cos  
 3 90 

2

Let f ( x)  cos x , a  60  , a  2 
=
3
180 90
 
    
cos 62 0  f (a)  f ' (a)x  cos   sin   
3
 3  90 
cos 62 0 
1
3 
1
3

 
2 2 90 2 180
(1 pt)
(1 pt)
(1 pt)
(1 pt)
  
 
    
cos 62 0  cos    cos   sin   
 3 90 
3
 3  90 
#2. b) 16.4 = 16  0.4
Let f ( x)  x , a  16, a  0.4
16.4  f (a)  f ' (a)x  16 
16.4  4 
(1 pt)
(1 pt)
4
 
2 16  10 
1
(2 pts)
1
1
81
 4

5(4)
20 20
3. By definition of differentiation
cos( x  h) cos( x)

sin( x  h) sin( x)
 lim
h 0
h
1  cos( x  h) cos( x) 
 lim 


h 0 h sin( x  h)
sin( x) 

(1 pt)
1  cos( x  h)sin( x)  cos( x)sin( x  h) 
 lim 

h 0 h
sin( x  h)sin( x)



1
1  cos( x  h)sin( x)  cos( x)sin( x  h) 
lim 

h

0
sin( x)
h
sin( x  h)


1
1
1  cos( x  h) sin( x)  cos( x) sin( x  h) 
lim
lim 

sin( x) h0 sin( x  h) h0 h 
1

(1 pt)
1
1
1
(1 pt)
*
lim  cos( x  h)sin( x)  cos( x)sin( x  h) 
sin( x) sin( x  0) h0 h
1
1

lim  cos( x  h)sin( x)  cos( x)sin( x  h) 
2
h

0
sin ( x)
h
1
1

lim   cos( x) cos(h)  sin( x) sin( h)  sin( x)  cos( x)  sin( x) cos( h)  cos( x) sin(h)  
2
sin ( x) h0 h


1
1   cos( x) sin( x) cos(h)  sin( x) sin( x) sin( h)  
lim 

2
sin ( x) h0 h    cos( x) sin( x) cos(h)  cos( x) cos( x) sin( h)  
1
1  cos( x)sin( x) cos(h)  sin( x)sin( x)sin(h) 
lim


sin 2 ( x) h0 h   cos( x)sin( x) cos(h)  cos( x) cos( x)sin(h) 
1
1

lim   sin( x)sin( x)sin(h)  cos( x) cos( x)sin(h) 
2
sin ( x) h0 h
1
1

lim   sin( x)sin( x)  cos( x) cos( x)  sin(h)
2
sin ( x) h0 h
1
1
 2
lim  sin 2 ( x)  cos 2 ( x)  sin(h)
h

0
sin ( x)
h
1
1
 2
lim 1 sin(h)
h

0
sin ( x)
h
1
sin(h)
 2
lim
sin ( x) h0 h
1
  2 *1
sin ( x)
1
 2
sin ( x)
  csc2 ( x)

4
1) We find the domain and range of the function f ( x) 
x is in domain  x 2  1  0
 ( x  1)( x  1)  0  x  1  0 and x  1  0
 x  1 and x  1
Domain is all numbers except x  1 and x  -1
(1 pt)
(1 pt)
(1 pt)
x2
.
x2 1
(1 pt)
2) (0,0) is the x and y intercepts
(1 pt)
2x
3) f ' ( x)   2
, hence f ( x)  0 if x = 0, and the critical points are 0, -1, 1. We
( x  1) 2
have that f ' ( x)  0 for x < -1 and -1 < x < 0; f ' ( x)  0 for 0 < x < 1 and x > 1.
On the real line, we have
(2 pts)
U
0
U
-1
0
1
4) We find f (x) .
x
f ( x)  2
 2
2
2
 1  x  2( x 2  1)  2 x
2
x
 1
4
2
( x 2  1)( 3x 2  1)
x
2
 1
3x 2  1
4
( x  1)( x  1) 3
2
2
 2
( x 2  1)( x 2  1)  x  2  2 x 
x
2
 1
4
3x 2  1
x
2
 1
3
3x 2  1
( x  1) 3 ( x  1) 3
U
U
1
-1
Critical points of f (x) are 1 and –1. We put the critical points on a real line below.
When x is on right most interval 1,  , all the factors of f (x) are positive.
So the sign of f (x) is positive.
Since ( x  1)3 and ( x  1)3 have odd degree, if x crosses critical points, the sign of f (x)
changes. Thus we sketch the sign of f (x) on real below.
Sign of f 
+
U
-1
-
U
+
1
Thus we have the diagram below.
(2 pts)
the real line indicating where function f is concave downward or upward
U
U
-1
1
5) We use all the information in the above steps to sketch the graph of y 
below.
x2
as
x2 1
(4 pts)
#4b.
1) domain all real numbers
2) f ( x)  ( x)  sin(  x)
  x   sin( x)
(1 pt)
   x  sin( x) 
  f ( x)
The function is odd function so the graph of y  x  sin x is symmetric with respective to
origin (0, 0) . (1 pt)
2) f ( x)  x  sin x
f ( x)  1  cos x  0
Thus the graph is increasing on  ,   .
(1 pt)
3) f ( x)   sin x
f ( x)   sin x  0
 sin x  0
   2n  x  2  2n
y  x  sin x is concave upward on the intervals   2n , 2  2n  for integer n .
y  x  sin x is concave downward on the intervals  2n ,   2n  for integer n .
(2 pts)
The graph is
(5 pts)
5. Find all maxima and minima of the following functions on the indicated intervals.
5 5 1
4 4 1
a) f’(x)  2* x 3  5* x 3
3
3
1
10 2 20 13 10 23
10 1 1
 x3 
x 
x  2x 3  x 3 x 3  2
3
3
3
3
f ( x)  0
10 1 1
 x3 x3  2  0
3

1


1





 x3 x3  2  0
1
1
 x 3  0 or x 3  2
 x  0 or x  8
(3 pts)
To find maximum or minimum value we check x  1, x  0, x  8, x  20
5
4
f (1)  2(1) 3  5(1) 3
5
4
 2(1) 3  5(1) 3
 2  5  7
5
4
f (0)  2(0) 3  5(0) 3  0
5
4
f (8)  2(8) 3  5(8) 3
 2(2)5  5(2)4
 (2)4  2(2)  5
 (2)4  4  5
 16
5
4
f (20)  2(20) 3  5(20) 3  23.2807582317404
Thus the minimum value is f (8)  16
5
(1 pt)
(1 pt)
4
and the maximum value is f (20)  2(20) 3  5(20) 3  23.2807582317404 .
#5b f’(x)  1 sin x  0 and sin x  1 , this is true for any real x.
(2 pt)
The function is continuous and increasing on the real line.
Hence
Maximum value is f (2 )  2  cos( 2 )  2  1
Minimum value is f ( )    cos( )    1
6. Compute the following integrals:
a)  ( x 2  x) 3x dx = 3  x 5 / 2  x 3 / 2 dx 
 2x 7 / 2 
 2x 5 / 2 
  3
  C
 3
 7 
 5 
d
sin x  cos x
b) since
dx
sin 2 x
sin
x
cos
xdx
=
C

2
b
x2 1
b
 sin( 2 x) a
b)  x  cos(2 x)dx =
a
2 2
2
2
x  sin( 2 x) b b  sin( 2b) a 2  sin( 2a)



a
2
2
2
(1 pt)
(1 pt)
(1 pt)
(1 pt)
(2 pts)
(1 pt)
(2 pts)
(2 pts)
(2 pts)
(1 pt)
6. a) 1) We sketch the graph of y  x and y  2  x 2 .
(2 pts)
2) We find the x values where two curves meet.
y  x and y  2  x 2  x  2  x 2
(2 pts)
 x 2  x  2  0  ( x  2)( x  1)  0  x  2  0 or x  1  0
 x  2 or x  1
3) We find the area of the region.
Let A be the area of the region. Then we know:
1




A   (2  x 2 )  x dx
2
1
1
1
 1

   x 2  x  2 dx   x 3  x 2  2 x 
2
2
 3
 2
1
 
1
 
1
1
1
1
 1 
 1 
1
1
  x 3    x 2   2 x  2   x 3  2   x 2  2  2x  2
3
2
 3  2  2  2
1
1
1
1
  13  (2) 3   12  (2) 2  21  (2)    9    (3)  2  3
3
2
3
2


A  3 
3
9
6
2
2

8. Perimeter P  2 x  2 y and
P( x)  2 x 

( 4pts)
xy = 220
thus
y
440
440
and P ' ( x)  2  2 = 0 for x = 2 55
x
x
220
x
(2 pts)
(2 pt)
880
 0 for any positive x. Hence the perimeter is minimum when the
x3
dimensions are
x = 2 55 and y  220 = 2 55 . The perimeter is 8 55
(2 pts)
P' ' ( x) 

9.
x
0
d
d
d
sin( t 2 ) dt =
sin( t 2 )dt 
sin( t 2 )dt



dx 2 x
dx 0
dx 2 x
x
(1 pt)
2x
d
d
sin( t 2 )dt 
sin( t 2 )dt 


dx 0
dx 0
(1 pt)
= sin( x 2 )  2 sin(( 2 x) 2 )  sin( x 2 )  2 sin( 4 x 2 )
(2 pts)
10. x1  1 ,
2
1 4
x2  1 
 1  ,
6
3 3
x3 
4 287(310)

 41.9312
3
81(27)
(1 pt)
(2 pts)
(2 pts)
Related documents