Download Ganti V - Crystal

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Tentative list of papers for presentation (CSE 6339):
Previous papers:
1. Ganti V., Lee M. L., Ramakrishnan R. ICICLES: Self-tuning Samples for Approximate
Query Answering. Proc. of VLDB, 2000.
2. Chaudhuri S., Das G., Datar M., Motwani R., Narasayya V. Overcoming Limitations of
Sampling for Aggregation Queries. Proc. of IEEE Conf. on Data Engineering, 2001.
3. P. B. Gibbons and Y. Matias. New Sampling-Based Summary Statistics for Improving
Approximate Query Answers. ACM SIGMOD 1998.
4. Acharya S., Gibbons P. B., Poosala V., Ramaswamy S. Join Synopses for Approximate
Query Answering. Proc. of ACM SIGMOD, 1999.
5. Chaudhuri S., Motwani R., Narasayya V. Random Sampling Over Joins. Proc. of ACM
SIGMOD, 1999.
6. Chaudhuri S., Das G., Narasayya V. A Robust, Optimization- Based Approach for
Approximate Answering of Aggregation Queries. Proc. of ACM SIGMOD, 2001.
7. Acharya S., Gibbons P. B., Poosala V. Congressional Samples for Approximate
Answering of Group-By Queries. Proc. of ACM SIGMOD, 2000.
8. Babcock B., Chaudhuri C. and Das G. Dynamic Sample Selection for Approximate
Query Processing. SIGMOD 2003: 539-550.
9. P. B. Gibbons, Y. Matias, and V. Poosala. Fast Incremental Maintenance of Approximate
Histograms. VLDB 1997.
10. P. J. Haas and J. M. Hellerstein. Ripple Joins for Online Aggregation. ACM SIGMOD
1999.
11. Hellerstein J., Haas P., Wang H. Online Aggregation. Proc. of ACM SIGMOD, 1997.
12. Answering Top-k queries Using Views, BLDB 2006, Gautam Das, Dimitrios Gunopulos,
Nick Koudas, Dimitris Tsirogiannis
13. Approximate query processing using Wavelets Kausik chakrabarti , Mopni Garofallakis
14. Supporting top-k join queries in relational databases Ihab F. Ilyas, Walid G. Aref, Ahmed
K. Elmagarmid
15. DBExplorer: A System For Keyword Based Search Over Relational Databases - Sanjay
Agrawal, Surajit Chaudhuri, Gautam Das.
16. Keyword Searching and Browsing in Databases using BANKS - Charuta Nakhe, Arvind
Hulgeri, Gaurav Bhalotia, Soumen Chakrabarti, S. Sudarshan.
17. Automated Ranking of Database Query Results- Sanjay Agrawal, Surajit Chaudhuri,
Gautam Das, Aristides Gionis, (CIDR 2003).
18. Probabilistic Ranking of Database Query Results -Surajit Chaudhuri, Gautam Das,
Vagelis Hristidis, Gerhard Weikum, (VLDB 2004).
19. Authoritative sources in a hyperlinked environment - Kleinberg. Journal of the ACM
46(1999).
20. The PageRank Citation Ranking: Bringing Order to the Web- L. Page, S. Brin, R.
Motwani, T. Winograd.
Some New papers:
ACM SIGMOD 2008
1. Nilesh Bansal, Sudipto Guha, Nick Koudas: Ad-hoc aggregations of ranked lists in the
presence of hierarchies. 67-78
2. Ming Hua, Jian Pei, Wenjie Zhang, Xuemin Lin: Ranking queries on uncertain data: a
probabilistic threshold approach. 673-686
3. Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørvåg, Michalis Vazirgiannis: On efficient
top-k query processing in highly distributed environments. 753-764
4. Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, Yizhou Sun: Sampling cube: a
framework for statistical olap over sampling data. 779-790
ACM SIGMOD 2007
5. Dong Xin, Jiawei Han, Kevin Chen-Chuan Chang: Progressive and selective merge:
computing top-k with ad-hoc ranking functions. 103-114
ACM SIGMOD 2006
6. Zhen Zhang, Seung-won Hwang, Kevin Chen-Chuan Chang, Min Wang, Christian A.
Lang, Yuan-Chi Chang: Boolean + ranking: querying a database by k-constrained
optimization. 359-370
7. Kaushik Chakrabarti, Venkatesh Ganti, Jiawei Han, Dong Xin: Ranking objects based on
relationships. 371-382
8. Rakesh Agrawal, Ralf Rantzau, Evimaria Terzi: Context-sensitive ranking. 383-394
9. Gautam Das, Vagelis Hristidis, Nishant Kapoor, S. Sudarshan: Ordering the attributes of
query results. 395-406
VLDB 2007
10. Junghoo Cho, Uri Schonfeld: RankMass Crawler: A Crawler with High PageRank
Coverage Guarantee. 375-386
11. Man Lung Yiu, Nikos Mamoulis: Efficient Processing of Top-k Dominating Queries on
Multi-Dimensional Data. 483-494
12. Reza Akbarinia, Esther Pacitti, Patrick Valduriez: Best Position Algorithms for Top-k
Queries. 495-506
13. Fei Xu, Chris Jermaine: Randomized Algorithms for Data Reconciliation in Wide Area
Aggregate Query Processing. 639-650
14. Benjamin Arai, Gautam Das, Dimitrios Gunopulos, Nick Koudas: Anytime Measures for
Top-k Algorithms. 914-925
15. Gautam Das, Dimitrios Gunopulos, Nick Koudas, Nikos Sarkas: Ad-hoc Top-k Query
Answering for Data Streams. 183-194
VLDB 2006
16. Gautam Das, Dimitrios Gunopulos, Nick Koudas, Dimitris Tsirogiannis: Answering Topk Queries Using Views. 451-462
17. Dong Xin, Jiawei Han, Hong Cheng, Xiaolei Li: Answering Top-k Queries with MultiDimensional Selections: The Ranking Cube Approach. 463-475
ICDE 2008
18. Donghui Zhang, Yang Du, Ling Hu: On Monitoring the top-k Unsafe Places. 337-345
19. Vebjorn Ljosa, Ambuj K. Singh: Top-k Spatial Joins of Probabilistic Objects. 566-575
20. Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu, Shivakumar
Vaithyanathan: An Algebraic Approach to Rule-Based Information Extraction. 933-942
21. Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya Ramanath, Gerhard
Weikum: NAGA: Searching and Ranking Knowledge. 953-962
ICDE 2007
22. Carsten Binnig, Donald Kossmann, Eric Lo: Reverse Query Processing. 506-515
23. Christopher Re, Nilesh N. Dalvi, Dan Suciu: Efficient Top-k Query Evaluation on
Probabilistic Data. 886-895
24. Mohamed A. Soliman, Ihab F. Ilyas, Kevin Chen-Chuan Chang: Top-k Query Processing
in Uncertain Databases. 896-905
Related documents