Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Tentative list of papers for presentation (CSE 6339): Previous papers: 1. Ganti V., Lee M. L., Ramakrishnan R. ICICLES: Self-tuning Samples for Approximate Query Answering. Proc. of VLDB, 2000. 2. Chaudhuri S., Das G., Datar M., Motwani R., Narasayya V. Overcoming Limitations of Sampling for Aggregation Queries. Proc. of IEEE Conf. on Data Engineering, 2001. 3. P. B. Gibbons and Y. Matias. New Sampling-Based Summary Statistics for Improving Approximate Query Answers. ACM SIGMOD 1998. 4. Acharya S., Gibbons P. B., Poosala V., Ramaswamy S. Join Synopses for Approximate Query Answering. Proc. of ACM SIGMOD, 1999. 5. Chaudhuri S., Motwani R., Narasayya V. Random Sampling Over Joins. Proc. of ACM SIGMOD, 1999. 6. Chaudhuri S., Das G., Narasayya V. A Robust, Optimization- Based Approach for Approximate Answering of Aggregation Queries. Proc. of ACM SIGMOD, 2001. 7. Acharya S., Gibbons P. B., Poosala V. Congressional Samples for Approximate Answering of Group-By Queries. Proc. of ACM SIGMOD, 2000. 8. Babcock B., Chaudhuri C. and Das G. Dynamic Sample Selection for Approximate Query Processing. SIGMOD 2003: 539-550. 9. P. B. Gibbons, Y. Matias, and V. Poosala. Fast Incremental Maintenance of Approximate Histograms. VLDB 1997. 10. P. J. Haas and J. M. Hellerstein. Ripple Joins for Online Aggregation. ACM SIGMOD 1999. 11. Hellerstein J., Haas P., Wang H. Online Aggregation. Proc. of ACM SIGMOD, 1997. 12. Answering Top-k queries Using Views, BLDB 2006, Gautam Das, Dimitrios Gunopulos, Nick Koudas, Dimitris Tsirogiannis 13. Approximate query processing using Wavelets Kausik chakrabarti , Mopni Garofallakis 14. Supporting top-k join queries in relational databases Ihab F. Ilyas, Walid G. Aref, Ahmed K. Elmagarmid 15. DBExplorer: A System For Keyword Based Search Over Relational Databases - Sanjay Agrawal, Surajit Chaudhuri, Gautam Das. 16. Keyword Searching and Browsing in Databases using BANKS - Charuta Nakhe, Arvind Hulgeri, Gaurav Bhalotia, Soumen Chakrabarti, S. Sudarshan. 17. Automated Ranking of Database Query Results- Sanjay Agrawal, Surajit Chaudhuri, Gautam Das, Aristides Gionis, (CIDR 2003). 18. Probabilistic Ranking of Database Query Results -Surajit Chaudhuri, Gautam Das, Vagelis Hristidis, Gerhard Weikum, (VLDB 2004). 19. Authoritative sources in a hyperlinked environment - Kleinberg. Journal of the ACM 46(1999). 20. The PageRank Citation Ranking: Bringing Order to the Web- L. Page, S. Brin, R. Motwani, T. Winograd. Some New papers: ACM SIGMOD 2008 1. Nilesh Bansal, Sudipto Guha, Nick Koudas: Ad-hoc aggregations of ranked lists in the presence of hierarchies. 67-78 2. Ming Hua, Jian Pei, Wenjie Zhang, Xuemin Lin: Ranking queries on uncertain data: a probabilistic threshold approach. 673-686 3. Akrivi Vlachou, Christos Doulkeridis, Kjetil Nørvåg, Michalis Vazirgiannis: On efficient top-k query processing in highly distributed environments. 753-764 4. Xiaolei Li, Jiawei Han, Zhijun Yin, Jae-Gil Lee, Yizhou Sun: Sampling cube: a framework for statistical olap over sampling data. 779-790 ACM SIGMOD 2007 5. Dong Xin, Jiawei Han, Kevin Chen-Chuan Chang: Progressive and selective merge: computing top-k with ad-hoc ranking functions. 103-114 ACM SIGMOD 2006 6. Zhen Zhang, Seung-won Hwang, Kevin Chen-Chuan Chang, Min Wang, Christian A. Lang, Yuan-Chi Chang: Boolean + ranking: querying a database by k-constrained optimization. 359-370 7. Kaushik Chakrabarti, Venkatesh Ganti, Jiawei Han, Dong Xin: Ranking objects based on relationships. 371-382 8. Rakesh Agrawal, Ralf Rantzau, Evimaria Terzi: Context-sensitive ranking. 383-394 9. Gautam Das, Vagelis Hristidis, Nishant Kapoor, S. Sudarshan: Ordering the attributes of query results. 395-406 VLDB 2007 10. Junghoo Cho, Uri Schonfeld: RankMass Crawler: A Crawler with High PageRank Coverage Guarantee. 375-386 11. Man Lung Yiu, Nikos Mamoulis: Efficient Processing of Top-k Dominating Queries on Multi-Dimensional Data. 483-494 12. Reza Akbarinia, Esther Pacitti, Patrick Valduriez: Best Position Algorithms for Top-k Queries. 495-506 13. Fei Xu, Chris Jermaine: Randomized Algorithms for Data Reconciliation in Wide Area Aggregate Query Processing. 639-650 14. Benjamin Arai, Gautam Das, Dimitrios Gunopulos, Nick Koudas: Anytime Measures for Top-k Algorithms. 914-925 15. Gautam Das, Dimitrios Gunopulos, Nick Koudas, Nikos Sarkas: Ad-hoc Top-k Query Answering for Data Streams. 183-194 VLDB 2006 16. Gautam Das, Dimitrios Gunopulos, Nick Koudas, Dimitris Tsirogiannis: Answering Topk Queries Using Views. 451-462 17. Dong Xin, Jiawei Han, Hong Cheng, Xiaolei Li: Answering Top-k Queries with MultiDimensional Selections: The Ranking Cube Approach. 463-475 ICDE 2008 18. Donghui Zhang, Yang Du, Ling Hu: On Monitoring the top-k Unsafe Places. 337-345 19. Vebjorn Ljosa, Ambuj K. Singh: Top-k Spatial Joins of Probabilistic Objects. 566-575 20. Frederick Reiss, Sriram Raghavan, Rajasekar Krishnamurthy, Huaiyu Zhu, Shivakumar Vaithyanathan: An Algebraic Approach to Rule-Based Information Extraction. 933-942 21. Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya Ramanath, Gerhard Weikum: NAGA: Searching and Ranking Knowledge. 953-962 ICDE 2007 22. Carsten Binnig, Donald Kossmann, Eric Lo: Reverse Query Processing. 506-515 23. Christopher Re, Nilesh N. Dalvi, Dan Suciu: Efficient Top-k Query Evaluation on Probabilistic Data. 886-895 24. Mohamed A. Soliman, Ihab F. Ilyas, Kevin Chen-Chuan Chang: Top-k Query Processing in Uncertain Databases. 896-905