Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Chapter 5 BJT AC Analysis 5.3 BJT Transistor Modeling A model is an equivalent circuit that represents the AC characteristics of the transistor. A model uses circuit elements that approximate the behavior of the transistor. There are two models commonly used in small signal AC analysis of a transistor: re model Hybrid equivalent model 5.4 The re Transistor Model BJTs are basically current-controlled devices; therefore the re model uses a diode and a current source to duplicate the behavior of the transistor. One disadvantage to this model is its sensitivity to the DC level. This model is designed for specific circuit conditions. Common-Emitter Configuration The diode re model can be replaced by the resistor re. Ie 1 Ib Ib 26 mV re Ie Common-Emitter Configuration Input impedance: Zi re Output impedance: Zo ro Voltage gain: AV RL re Current gain: Ai ro Common-Base Configuration Input impedance: re 26 mV Ie Zi re Output impedance: Zo Voltage gain: AV RL RL re re Current gain: Ai 1 Common-Collector Configuration Input impedance: Zi ( 1)re Output impedance: Zo re || RE Voltage gain: AV RE RE re Current gain: Ai β 1 5.5 Common-Emitter Fixed-Bias Configuration The input is applied to the base. The output is taken from the collector. High input impedance Low output impedance High voltage and current gain Phase shift between input and output is 180. Common-Emitter Fixed-Bias Configuration AC equivalent re,model Common-Emitter Fixed-Bias Calculations Input impedance: Output impedance: Zi RB||β| e Zi βre Zo RC||rO Zo RC Av Voltage gain: RE 10 βr e RC re Current gain: ro 10 RC Io βRB ro I i (ro RC )(R B βre ) Ai β ro 10 RC Vo (R ||r ) C o Vi re Av Ai Current gain from voltage gain: ro 10 RC , RB 10 βr e Ai AV Zi RC 5.6 Common-Emitter Voltage-Divider Bias re model requires you to determine , re, and ro. Common-Emitter Voltage-Divider Bias Calculations Input impedance R R1 || R2 Zi R || βre Voltage gain Av Vo RC || ro Vi re Av Vo R C Vi re ro 10R C Output impedance Zo RC || ro Zo RC ro 10RC Current gain Io R ro I i (ro RC )(R re ) I R Ai o r 10R I i R re o C Ai Ai Io ro 10RC , R10 re Ii Current gain from Av Ai Av Zi RC 5.7 Common-Emitter Emitter-Bias Configuration Impedance Calculations Input impedance: Zi RB || Zb Zb re ( 1)RE Zb (re RE ) Zb RE Output impedance: Zo RC Gain Calculations Voltage gain: Av Vo R C Vi Zb Av Vo RC Vi re RE Av Vo R C Vi RE Zb (re RE ) Z b RE Current gain: Ai Io RB Ii RB Zb Current gain from Av: Ai Av Zi RC 5.8 Emitter-Follower Configuration This is also known as the common-collector configuration. The input is applied to the base and the output is taken from the emitter. There is no phase shift between input and output. Impedance Calculations Input impedance: Zi RB ||Z b Zb βre (β 1)RE Zb β(re RE ) Zb βRE Output impedance: Zo RE||re Zo re RE re Gain Calculations Voltage gain: Av Vo RE Vi RE re Av Vo 1 Vi RE re , RE re RE Current gain: Ai βRB RB Z b Current gain from voltage gain: Ai Av Zi RE 5.9 Common-Base Configuration The input is applied to the emitter. The output is taken from the collector. Low input impedance. High output impedance. Current gain less than unity. Very high voltage gain No phase shift between input and output Calculations Input impedance: Zi RE || re Output impedance: Zo RC Voltage gain: Av Vo RC RC Vi re re Current gain: Ai Io 1 Ii 5.10 CE Collector Feedback Configuration • • • • A variation of the common-emitter fixed-bias configuration Input is applied to the base Output is taken from the collector There is a 180 phase shift between the input and output Calculations Input impedance: Output impedance: Voltage gain: Av Zi Zo RC || RF Vo R C Vi re Current gain: Ai Io βRF Ii RF βRC Ai Io R F Ii RC re 1 RC β RF 5.11 Collector DC Feedback Configuration This is a variation of the commonemitter, fixed-bias configuration. The input is applied to the base. The output is taken from the collector. There is a 180 phase shift between input and output. Calculations Input impedance: Zi re 1 RC β RF Output impedance: Zo RC||RF Voltage gain: Av Vo R C Vi re Current gain: Ai Io RF Ii RF RC Ai Io R F Ii RC 5.12 Effect of Source Impedance on Gain The amplitude of the applied signal that reaches the input of the amplifier is: Vi RiVs R i Rs The internal resistance of the signal source reduces the overall gain: Avs Vo Ri AvNL Vs Ri Rs Combined Effects of RS and RL on Voltage Gain Effects of RL: Av Vo RL AvNL Vi RL Ro Ai Av Ri RL Avs Effects of RL and RS: Vo Ri RL AvNL Vs Ri Rs RL Ro Ais Avs Rs R i RL 5.15 Two-Port Systems Approach With Vi set to 0 V: ZTh Zo Ro The voltage across the open terminals is: where AvNL is the no-load voltage gain. ETh AvNLVi Effect of Load Impedance on Gain This model can be applied to any amplifier. Adding a load reduces the gain of the amplifier: Av Vo RL AvNL Vi RL Ro Ai Av Zi RL 5.16 Cascaded Systems The output of one amplifier is the input to the next amplifier. The overall voltage gain is determined by the product of gains of the individual stages. The DC bias circuits are isolated from each other by the coupling capacitors. The DC calculations are independent of the cascading. The AC calculations for gain and impedance are interdependent. R-C Coupled BJT Amplifiers Voltage gain: Av1 RC || R1 || R2 || βRe re Av2 RC re Av Av1 Av2 Output impedance, second stage: Zi R1 || R2 || Re Input impedance, first stage: Zo RC Cascode Connection This example is a CE–CB combination. This arrangement provides high input impedance but a low voltage gain. The low voltage gain of the input stage reduces the Miller input capacitance, making this combination suitable for high-frequency applications. 5.17 Darlington Connection The Darlington circuit provides very high current gain, equal to the product of the individual current gains: D = 1 2 The practical significance is that the circuit provides a very high input impedance. DC Bias of Darlington Circuits Base current: IB VCC VBE RB D RE Emitter current: IE (D 1)IB DIB Emitter voltage: VE IE RE Base voltage: VB VE VBE 5.18 Feedback Pair This is a two-transistor circuit that operates like a Darlington pair, but it is not a Darlington pair. It has similar characteristics: • High current gain • Voltage gain near unity • Low output impedance • High input impedance The difference is that a Darlington uses a pair of like transistors, whereas the feedback-pair configuration uses complementary transistors. Ch.5 Summary Current Mirror Circuits Current mirror circuits provide constant current in integrated circuits. Ch.5 Summary Current Source Circuits Constant-current sources can be built using FETs, BJTs, and combinations of these devices. I IE VZ VBE RE IE IC Ch.5 Summary Current Source Circuits VGS = 0V ID = IDSS = 10 mA Ch.5 Summary Fixed-Bias Input impedance: Zi RB || hie Output impedance: Zo RC || 1/ hoe Voltage gain: Av Vo h R || 1/ ho e fe C Vi hie Current gain: Ai Io hfe Ii Ch.5 Summary Voltage-Divider Configuration Input impedance: Zi R || hie Output impedance: Zo RC Voltage gain: Av Current gain: hfe RC || 1/hoe hie Ai hfeR R hie Ch.5 Summary Emitter-Follower Configuration Input impedance: Zb hfeRE Zi Ro || Zb Z b h fe R E Z i R o || Z b Output impedance: Zo RE || hie hfe Voltage gain: Av Vo RE Vi RE hie / hfe Ai Current gain: hfeRB RB Z b Ai Av Zi RE Ch.5 Summary Common-Base Configuration Input impedance: Zi RE || hib Output impedance: Zo RC Voltage gain: Av Vo h R fb C Vi hib Current gain: Ai Io hfb 1 Ii 5.19 The Hybrid Equivalent Model Hybrid parameters are developed and used for modeling the transistor. These parameters can be found on a transistor’s specification sheet: hi = input resistance hr = reverse transfer voltage ratio (Vi/Vo) 0 hf = forward transfer current ratio (Io/Ii) ho = output conductance Ch.5 Summary Simplified General h-Parameter Model hi = input resistance hf = forward transfer current ratio (Io/Ii) Ch.5 Summary re vs. h-Parameter Model Common-Emitter hie βre hfe βac Common-Base hib re hfb α 1 5.22 The Hybrid Model The hybrid pi model is most useful for analysis of high-frequency transistor applications. At lower frequencies the hybrid pi model closely approximate the re parameters, and can be replaced by them. 5.24 Troubleshooting Check the DC bias voltages If not correct, check power supply, resistors, transistor. Also check the coupling capacitor between amplifier stages. Check the AC voltages If not correct check transistor, capacitors and the loading effect of the next stage.